首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3603篇
  免费   283篇
  国内免费   489篇
  4375篇
  2024年   5篇
  2023年   35篇
  2022年   44篇
  2021年   45篇
  2020年   77篇
  2019年   83篇
  2018年   94篇
  2017年   106篇
  2016年   94篇
  2015年   126篇
  2014年   123篇
  2013年   183篇
  2012年   102篇
  2011年   123篇
  2010年   120篇
  2009年   184篇
  2008年   204篇
  2007年   206篇
  2006年   205篇
  2005年   170篇
  2004年   157篇
  2003年   144篇
  2002年   134篇
  2001年   98篇
  2000年   110篇
  1999年   74篇
  1998年   100篇
  1997年   89篇
  1996年   89篇
  1995年   109篇
  1994年   91篇
  1993年   82篇
  1992年   65篇
  1991年   61篇
  1990年   58篇
  1989年   74篇
  1988年   72篇
  1987年   61篇
  1986年   46篇
  1985年   66篇
  1984年   57篇
  1983年   27篇
  1982年   41篇
  1981年   44篇
  1980年   23篇
  1979年   25篇
  1978年   16篇
  1977年   9篇
  1976年   9篇
  1973年   7篇
排序方式: 共有4375条查询结果,搜索用时 15 毫秒
891.
892.
Throughout the United States, agricultural practices are responsible for large quantities of nutrients entering lakes and streams. Previous studies have shown that forested riparian areas can filter nutrients from surface runoff and groundwater that may potentially contaminate lakes and streams. This study examined seasonal differences in soil chemistry and soil microorganisms in paired mixed-forest riparian and pasture systems, the aim being to gain understanding of the sequestering of N and P. The forest soils retained higher levels of organic C and N, mineralizable N, extractable P, and fungal biomass, and had higher respiration rates than pasture soils. These findings suggest that forested riparian zones have a greater capacity than pasture soils to sequester C and retain nutrients. In past studies, fungal biomass has been shown to be less than bacterial biomass in grassland soils, but in this study, fungal biomass was greater than bacterial biomass throughout the year in both forest and pasture soils.  相似文献   
893.
894.
We measured growing season soil CO2 evolution under elevated atmospheric [CO2] and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and compare two measurement techniques. Elevated [CO2] treatments were applied in open-top chambers containing ponderosa pine (Pinus ponderosa L.) seedlings. N applications were made annually in early spring. The experimental design was a replicated factorial combination of CO2 (ambient, + 175, and +350 L L–1 CO2) and N (0, 10, and 20 g m–2 N as ammonium sulphate). Soils were irrigated to maintain soil moisture at > 25 percent. Soil CO2 evolution was measured over diurnal periods (20–22 hours) in October 1992, and April, June, and October 1993 and 1994 using a flow-through, infrared gas analyzer measurement system and corresponding pCO2 measurements were made with gas wells. Significantly higher soil CO2 evolution was observed in the elevated CO2 treatments; N effects were not significant. Averaged across all measurement periods, fluxes, were 4.8, 8.0, and 6.5 for ambient + 175 CO2, and +350 CO2 respectively).Treatment variation was linearly related to fungal occurrence as observed in minirhizotron tubes. Seasonal variation in soil CO2 evolution was non-linearly related to soil temperature; i.e., fluxes increased up to approximately soil temperature (10cm soil depth) and decreased dramatically at temperatures > 18°C. These patterns indicate exceeding optimal temperatures for biological activity. The dynamic, flow-through measurement system was weakly correlated (r = 0.57; p < 0.0001; n = 56) with the pCO2 measurement method.  相似文献   
895.
Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of short-term fluctuations of these three environmental factors on the relation between actual and observed root respiration rates. We designed an automated, open, gas-exchange system that allows continuous measurements on 12 chambers with intact roots in soil. By using three distinct chamber designs with each a different path for the air flow, we were able to measure root respiration over a 50-fold range of soil CO2 concentrations (400 to 25000 ppm) and to separate the effect of irrigation on observed vs. actual root respiration rate. All respiration measurements were made on one-year-old citrus seedlings in sterilized sandy soil with minimal organic material.Root respiration was strongly affected by diurnal fluctuations in temperature (Q10 = 2), which agrees well with the literature. In contrast to earlier findings for Douglas-fir (Qi et al., 1994), root respiration rates of citrus were not affected by soil CO2 concentrations (400 to 25000 ppm CO2; pH around 6). Soil CO2 was strongly affected by soil water content but not by respiration measurements, unless the air flow for root respiration measurements was directed through the soil. The latter method of measuring root respiration reduced soil CO2 concentration to that of incoming air. Irrigation caused a temporary reduction in CO2 diffusion, decreasing the observed respiration rates obtained by techniques that depended on diffusion. This apparent drop in respiration rate did not occur if the air flow was directed through the soil. Our dynamic data are used to indicate the optimal method of measuring root respiration in soil, in relation to the objectives and limitations of the experimental conditions.  相似文献   
896.
The effects of ferulic acid on L-malate oxidation in mitochondria isolated from soybean (Glycine max L.) seedlings were investigated. Oxygen uptake and the products of L-malate oxidation were measured under two conditions: pH 6.8 and 7.8. At acidic pH, the activity of the NAD+-linked malic enzyme (L-malate:NAD+oxidoreductase [decarboxylating] EC 1.1.1.39) was favoured, whereas at alkaline pH a predominance of the L-malate dehydrogenase activity (L-malate:NAD+oxidoreductase EC 1.1.1.37) was apparent. Ferulic acid inhibited basal and coupled respiration during L-malate oxidation either at acidic or alkaline pH, reducing also the amounts of pyruvate or oxaloacetate produced. The results suggest that the site of ferulic acid action is situated at some step that precedes the respiratory chain. An interference with the L-malate entry into the mitochondria could be an explanation for the effects of ferulic acid, but the possibility of a direct inhibition of both enzymes involved in L-malate oxidation cannot be ruled out. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
897.
Long-term effects of elevated winter temperatures on cold hardiness were investigated for Norway spruce (Picea abies L. Karst.), lodgepole pine (Pinus contorta Dougl.) and Scots pine (Pinus sylvestris L.). Two-year-old seedlings with the same pre-history of growth and cold hardening in the field were maintained from early December to late March at two field sites in northern Sweden and in a cold room. The temperatures at these locations averaged –13·5, –8·9 and 5·5°C, respectively. Following treatments, carbohydrate contents and cold tolerances were assessed. Needle respiration was also analysed during the 5·5°C treatment. Cold tolerance of lodgepole pine and Scots pine was much reduced following the 5·5°C treatment. Cold tolerance was somewhat reduced in lodgepole pine following the –8·9 °C treatment, but was essentially maintained in spruce throughout all treatments. The cold tolerance of needles was strongly correlated with their soluble sugar contents. Spruce maintained cold hardiness by having larger reserves of sugars and lower rates of respiration which decreased more rapidly as sugars were depleted. Tolerance of lodgepole pine to frost desiccation was also much reduced following the 5·5°C treatment.  相似文献   
898.
This study was designed to evaluate the long-term effects of paced diaphragmatic breathing on subjects who reported functional cardiac symptoms and who also demonstrated associated signs of hyperventilation syndrome. Subjects were a representative sample composed of 10 out of the original 41 subjects who had participated three years previously in a study designed to evaluate the short-term effects of breathing retraining on functional cardiac symptoms and respiratory parameters (respiratory rate and end-tidal carbon dioxide). The results of this follow-up study indicate that breathing retraining had lasting effects on both respiratory parameters measured. Subjects evidenced significantly higher end-tidal carbon dioxide levels and lower respiratory rates when compared to pretreatment levels measured three years earlier. Subjects also continued to report a decrease in the frequency of functional cardiac symptoms when compared to pretreatment levels. We conclude that breathing retraining has lasting effects on respiratory physiology and is highly correlated with a reduction in reported functional cardiac symptoms.We would like to thank the Marquette Company for the use of their end-tidal CO2 equipment. We also thank the Biofeedback Institute of San Diego for supporting this study by providing office space and equipment. Steven DeGuire, Ph.D. is now affiliated with Heather Hill Hospital Health and Care Center in Chardon, Ohio.  相似文献   
899.
900.
发酵肥与秸杆还田对土壤呼吸,固氮与反硝化作用的影响   总被引:2,自引:0,他引:2  
土壤中施入不发酵新鲜粪肥时反硝化作用增强,固氮活性明显减弱;当施入发酵肥时反硝化作用较弱,而固氮活性比不发酵肥强。在施发酵肥基础上再进行秸秆还田,土壤呼吸作用增强,反硝化作用进一步减弱,固氮活性提高。在秸秆还田时喷雾接种木霉(Trichodermakoningi)458—2与固氮菌(Az.vinelandii)230提高了土壤固氮活性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号