首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3604篇
  免费   283篇
  国内免费   488篇
  2024年   5篇
  2023年   35篇
  2022年   44篇
  2021年   45篇
  2020年   77篇
  2019年   83篇
  2018年   94篇
  2017年   106篇
  2016年   94篇
  2015年   126篇
  2014年   123篇
  2013年   183篇
  2012年   102篇
  2011年   123篇
  2010年   120篇
  2009年   184篇
  2008年   204篇
  2007年   206篇
  2006年   205篇
  2005年   170篇
  2004年   157篇
  2003年   144篇
  2002年   134篇
  2001年   98篇
  2000年   110篇
  1999年   74篇
  1998年   100篇
  1997年   89篇
  1996年   89篇
  1995年   109篇
  1994年   91篇
  1993年   82篇
  1992年   65篇
  1991年   61篇
  1990年   58篇
  1989年   74篇
  1988年   72篇
  1987年   61篇
  1986年   46篇
  1985年   66篇
  1984年   57篇
  1983年   27篇
  1982年   41篇
  1981年   44篇
  1980年   23篇
  1979年   25篇
  1978年   16篇
  1977年   9篇
  1976年   9篇
  1973年   7篇
排序方式: 共有4375条查询结果,搜索用时 31 毫秒
231.
232.
Whole‐cell biocatalysis for C–H oxyfunctionalization depends on and is often limited by O2 mass transfer. In contrast to oxygenases, molybdenum hydroxylases use water instead of O2 as an oxygen donor and thus have the potential to relieve O2 mass transfer limitations. Molybdenum hydroxylases may even allow anaerobic oxyfunctionalization when coupled to anaerobic respiration. To evaluate this option, the coupling of quinoline hydroxylation to denitrification is tested under anaerobic conditions employing Pseudomonas putida (P. putida) 86, capable of aerobic growth on quinoline. P. putida 86 reduces both nitrate and nitrite, but at low rates, which does not enable significant growth and quinoline hydroxylation. Introduction of the nitrate reductase from Pseudomonas aeruginosa enables considerable specific quinoline hydroxylation activity (6.9 U gCDW?1) under anaerobic conditions with nitrate as an electron acceptor and 2‐hydroxyquinoline as the sole product (further metabolization depends on O2). Hydroxylation‐derived electrons are efficiently directed to nitrate, accounting for 38% of the respiratory activity. This study shows that molybdenum hydroxylase‐based whole‐cell biocatalysts enable completely anaerobic carbon oxyfunctionalization when coupled to alternative respiration schemes such as nitrate respiration.  相似文献   
233.
Global temperature has been Increased by 0.6 ℃ over the past century and is predicted to Increase by 1.4-5.8 ℃ by the end of this century. It is unclear what impacts global warming will have on tallgrass species. In the present study, we examined leaf net photosynthetic rate (P.) and leaf respiration rate in darkness (Rd) of Aster erlcoldes (L.) Nesom, Ambrosia psllostachya DC., Helianthus mollis Lam., and Sorghastrum nutans (L.) Nash In response to experimental warming in a tallgrass prairie ecosystem of the Great Plains, USA, in the autumn (fall) of 2000 and through 2001. Warming has been Implemented with infrared heaters since 21 November 1999. The P. increased significantly In spring, decreased in early fall, and did not change in summer and late fall in the four species under warming compared with control. The Rd of the four species increased significantly until mid-summer and then did not change under warming. Measured temperature-response curves of P. showed that warming Increased the optimum temperature of P. (Topt) by 2.32 and 4.59 ℃ for H. mollis and S. nutans, respectively, in August, whereas there were no changes in May and September, and A. ericoldes and A. psllostachya also showed no changes in any of the 3 months. However, P. at optimum temperature (Popt) showed downregulation in September and no regulation in May and August for all four species. The temperature-response curves of Rd Illustrate that the temperature sensitivity of Rd, Q10, was lower in the warmed plots compared with the control plots, except for A. ericoides in August, whereas there were no changes In May and September for all four species. The results of the present study indicate that photosynthetic and respiratory acclimation varies with species and among seasons, occurring In the mid-growing season and not in the early and late growing seasons.  相似文献   
234.
235.
生态系统光合和呼吸是构成净生态系统CO2交换量(NEE)的重要组分。涡度相关技术可直接观测生态系统NEE,并通过建立温度回归或光响应曲线等函数将NEE统计拆分为生态系统光合和呼吸,但是存在自相关和高估白天呼吸等问题。稳定同位素红外光谱技术的进步使高时间分辨率大气CO2及其稳定碳同位素组成(δ13C)的连续观测成为可能,与涡度相关技术观测的NEE数据相结合,可实现昼夜和季节尺度生态系统光合和呼吸拆分。本文系统阐述了生态系统光合与呼吸的同位素通量拆分方法的基本理论与假设,阐述了同位素通量观测技术的发展及其应用进展,综述了同位素通量拆分理论解析生态系统光合与呼吸过程的新机制认识,最后总结并展望了同位素通量拆分理论的不确定性以及开展多种拆分方法综合比较的必要性。  相似文献   
236.
土壤呼吸作为陆地生态系统碳循环的关键过程,对大气CO2浓度变化有直接影响。研究其如何响应降雨变化、氮沉降增加等全球变化因子,成为近年全球变化领域的热点与难点。与土壤呼吸响应降雨变化或氮沉降增加单个因子相比,研究土壤呼吸对这两个因子交互作用的响应更接近真实的自然环境,可更准确地预估未来土壤碳排放的变化趋势。目前,相关研究涉及全球不同的陆地生态系统,从土壤、微生物和植物层面对其响应机理进行揭示。本文从土壤呼吸及其组分、相关的土壤性质、微生物及植物因素方面,较全面地梳理了不同陆地生态系统土壤呼吸响应降雨变化和氮沉降增加交互作用的研究进展,指出了现有研究中的不足及今后需加强的研究方向,以期为进一步揭示土壤呼吸对降雨变化和氮沉降增加交互作用的响应规律及机制提供参考。  相似文献   
237.
To evaluate the efficiency of oxygen (O2) uptake from water through the fish gill lamellar system, a cost function (CF) representing mechanical power expenditure for water ventilation and blood circulation through the gill was formulated, by applying steady-state fluid mechanics to a homogeneous lamellar-channel model. This approach allowed us to express CF as the function of inter-lamellar water channel width (w) and to derive an analytical solution of the width (wmin) at the minimum CF. Morphometric and physiological data for rainbow trout in the literature were referred to calculate CF(w) curves and their wmin values at five intensity stages of swimming exercise. Obtained wmin values were evenly distributed around the standard measure of the width (ws = 24 μm) in this fish. Individual levels of CF(wmin) were also fairly close to the corresponding CF(ws) values within a 10% deviation, suggesting the reliability of approximating [CF(wmin) = CF(ws)]. The cost-performance of O2 uptake through the gill (ηg) was then assessed from reported data of total O2 uptake/CF(ws) at each intensity stage. The ηg levels at any swimming stage exceeded 95% of the theoretical maximum value, implying that O2 uptake is nearly optimally performed in the lamellar-channel system at all swimming speeds. Further analyses of O2 transport in this fresh water fish revealed that the water ventilation by the buccal/opercular pumping evokes a critical limit of swimming velocity, due to confined O2 supply to the peripheral skeletal muscles, which is avoided in ram ventilators such as tuna.  相似文献   
238.
The paper considers the effects of bedaquiline (BDQ), an antituberculous preparation of the new generation, on rat liver mitochondria. It was shown that 50?μM BDQ inhibited mitochondrial respiration measured with substrates of complexes I and II (glutamate/malate and succinate/rotenone systems respectively) in the states V3 and VDNP. At the same time, at concentrations below 50?μM, BDQ slightly stimulated respiration with substrates of complex I in the state V2. BDQ was also found to suppress, in a dose-dependent manner, the activity of complex II and the total activity of complexes II?+?III of the mitochondrial transport chain. It was discovered that at concentrations up to 10?μM, BDQ inhibited H2O2 production in mitochondria. BDQ (10–50?μM) suppressed the opening of Ca2+-dependent CsA-sensitive mitochondrial permeability transition pore. The latter was revealed experimentally as the inhibition of Ca2+/Pi-dependent swelling of mitochondria, suppression of cytochrome c release, and an increase in the Ca2+ capacity of the organelles. BDQ also decreased the rate of mitochondrial energy-dependent K+ transport, which was evaluated by the energy-dependent swelling of mitochondria in a K+ buffer and DNP-induced K+ efflux from the organelles. The possible mechanisms of BDQ effect of rat liver mitochondria are discussed.  相似文献   
239.
This study aimed to investigate whether exogenous application of carnitine stimulates transportation of fatty acids into mitochondria, which is an important part of fatty acid trafficking in cells, and mitochondrial respiration in the leaves of maize seedlings grown under normal and cold conditions. Cold stress led to significant increases in lipase activity, which is responsible for the breakdown of triacylglycerols, and carnitine acyltransferase (carnitine acyltransferase I and II) activities, which are responsible for the transport of activated long-chain fatty acids into mitochondria. While exogenous application of carnitine has a similar promoting effect with cold stress on lipase activity, it resulted in further increases in the activity of carnitine acyltransferases compared to cold stress. The highest activity levels for these enzymes were recorded in the seedlings treated with cold plus carnitine. In addition, these increases were correlated with positive increases in the contents of free- and long-chain acylcarnitines (decanoyl-l-carnitine, lauroyl-l-carnitine, myristoyl-l-carnitine, and stearoyl-l-carnitine), and with decreases in the total lipid content. The highest values for free- and long-chain acylcarnitines and the lowest value for total lipid content were recorded in the seedlings treated with cold plus carnitine. On the other hand, carnitine with and without cold stress significantly upregulated the expression level of citrate synthase, which is responsible for catalysing the first reaction of the citric acid cycle, and cytochrome oxidase, which is the membrane-bound terminal enzyme in the electron transfer chain, as well as lipase. All these results revealed that on the one hand, carnitine enhanced transport of fatty acids into mitochondria by increasing the activities of lipase and carnitine acyltransferases, and, on the other hand, stimulated mitochondrial respiration in the leaves of maize seedlings grown under normal and cold conditions.  相似文献   
240.
Auxin modulates a range of plant developmental processes including embryogenesis, organogenesis, and shoot and root development. Recent studies have shown that plant hormones also strongly influence metabolic networks, which results in altered growth phenotypes. Modulating auxin signalling pathways may therefore provide an opportunity to alter crop performance. Here, we performed a detailed physiological and metabolic characterization of tomato (Solanum lycopersicum) mutants with either increased (entire) or reduced (diageotropicadgt) auxin signalling to investigate the consequences of altered auxin signalling on photosynthesis, water use, and primary metabolism. We show that reduced auxin sensitivity in dgt led to anatomical and physiological modifications, including altered stomatal distribution along the leaf blade and reduced stomatal conductance, resulting in clear reductions in both photosynthesis and water loss in detached leaves. By contrast, plants with higher auxin sensitivity (entire) increased the photosynthetic capacity, as deduced by higher Vcmax and Jmax coupled with reduced stomatal limitation. Remarkably, our results demonstrate that auxin‐sensitive mutants (dgt) are characterized by impairments in the usage of starch that led to lower growth, most likely associated with decreased respiration. Collectively, our findings suggest that mutations in different components of the auxin signalling pathway specifically modulate photosynthetic and respiratory processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号