首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3339篇
  免费   247篇
  国内免费   196篇
  2024年   26篇
  2023年   41篇
  2022年   37篇
  2021年   55篇
  2020年   133篇
  2019年   102篇
  2018年   115篇
  2017年   114篇
  2016年   77篇
  2015年   75篇
  2014年   117篇
  2013年   237篇
  2012年   79篇
  2011年   127篇
  2010年   96篇
  2009年   146篇
  2008年   152篇
  2007年   169篇
  2006年   160篇
  2005年   124篇
  2004年   115篇
  2003年   102篇
  2002年   96篇
  2001年   57篇
  2000年   57篇
  1999年   62篇
  1998年   68篇
  1997年   54篇
  1996年   60篇
  1995年   79篇
  1994年   78篇
  1993年   47篇
  1992年   69篇
  1991年   50篇
  1990年   66篇
  1989年   46篇
  1988年   58篇
  1987年   49篇
  1986年   37篇
  1985年   45篇
  1984年   56篇
  1983年   28篇
  1982年   41篇
  1981年   48篇
  1980年   34篇
  1979年   37篇
  1978年   14篇
  1977年   11篇
  1976年   18篇
  1974年   9篇
排序方式: 共有3782条查询结果,搜索用时 31 毫秒
991.
Komlos J  Jaffé PR 《Biodegradation》2004,15(5):315-325
Dissolved hydrogen (H2) concentrations have been shown to correlate with specific terminal electron accepting processes (TEAPs) in aquifers. The research presented herein examined the effect of iron bioavailability on H2 concentrations during iron reduction in flow-through column experiments filled with soil obtained from the uncontaminated background area of the Field Research Center (FRC), Oak Ridge, TN and amended with acetate as the electron donor. The first column experiment measured H2 concentrations over 500 days of column operation that fluctuated within a substantial range around an average of 3.9 nM. Iron reduction was determined to be the dominant electron accepting process. AQDS (9,10-anthraquinone-2,6-disulfonic acid) was then used to determine if H2 concentrations during iron reduction were related to iron bioavailability. For this purpose, a 100-day flow-through column experiment was conducted that compared the effect of AQDS on iron reduction and subsequent H2 concentrations using two columns in parallel. Both columns were packed with FRC soil and inoculated with Geobacter sulfurreducens but only one was supplied with AQDS. The addition of AQDS increased the rate of iron reduction in the flow-through column and slightly decreased the steady-state H2 concentrations from an average of 4.0 nM for the column without AQDS to 2.0 nM for the column with AQDS. The results of this study therefore show that H2 can be used as an indicator to monitor rate and bioavailability changes during microbial iron reduction.  相似文献   
992.
The effect of low concentrations of cyanide on dissimilatory perchlorate and chlorate reduction and aerobic respiration was examined using pure cultures of Azospira sp. KJ. Cyanide at a concentration of 38 microM inhibited cell growth on perchlorate, chlorate and molecular oxygen, but it did not inhibit the activity of chlorite dismutase. When oxygen accumulation was prevented by adding an oxygen scavenger (Oxyrase or L-cysteine), however, cells completely reduced perchlorate in the presence of cyanide. It was concluded that the inhibition of dissimilative perchlorate reduction by cyanide at this concentration was a consequence of oxygen accumulation, not inhibition of the enzymes used for perchlorate reduction. This finding on the effect of cyanide on respiratory enzymes provides a new method to control and study respiratory enzymes used for perchlorate reduction.  相似文献   
993.
Activities of proteases were stimulated by specific sulphur metabolites during the enhanced hydrolysis of complex polymeric organic carbon in an anaerobic sulphidogenic environment. While sulphate at 1000 mg l(-1) inhibited proteases by 50%, there was a 2.5-fold increase in activity of proteases by added sulphite and a 3.6-fold increase from added sulphide. Two hypothetical models are proposed. First the sulphur species, sulphite (HSO3-) and sulphide (HS-), liberated at different times during the sulphate reduction process, directly activate the proteases, which are associated with the organic particulate matter, leading to a subsequent enhancement of hydrolysis of polymeric material. Second, they indirectly activate the proteases by neutralising the cations on the floc surface disrupting the integrity of the organic particulate floc therebye releasing further entrapped enzymes from the organic particulate matter.  相似文献   
994.
Sulfoquinovosyldiacylglycerol is a polar lipid present in photosynthetic membranes. It contributes to the negative surface charge of the membrane and plays a pivotal role under phosphate stress. The SQD1 protein is the key enzyme involved in the formation of the sulfolipid head group precursor, uridine 5(')-diphosphate (UDP)-sulfoquinovose, from UDP-glucose and sulfite. A cDNA encoding the spinach SQD1 protein was isolated and functionally expressed in Escherichia coli. The recombinant enzyme was compared to the native enzyme purified from isolated spinach chloroplasts. While the K(m) for UDP-glucose was indistinguishable for the two forms, the K(m) for sulfite was more than fourfold lower (< microM) for the native enzyme. Sizing by gel filtration indicated that the native form purified as a large complex of approximately 250 kDa, which is more than twice as large as the calculated size for the homodimer. It is proposed that in vivo SQD1 forms a complex with accessory proteins.  相似文献   
995.
Microbial sulfate reduction in a brackish meromictic steppe lake   总被引:1,自引:0,他引:1  
Patterns of sulfate reduction were studied in water and sediments of Lake Shira, South Siberia, Russia. The lake was characterized by a high level of sulfate (91-116 mM). The concentration of hydrogen sulfide in the anoxic waters of the lake reached 0.6 mM. In summer the sulfate reduction rate in the water column, measured by radiometric technique, varied from 0.25 to 9.81 mol sulfate l-1 d-1. There were two peaks of sulfate reduction activity: just below the chemocline and near the sediment surface. Sulfate reduction rate in the profundal silts ranged from 4.1 to 90.6 mol l-1 d-1. The zone of the most active sulfate reduction was restricted to the surface sediment layers. The acceleration of sulfate reduction rate (up to 236 mol l-1 d-1) and the increase of density of viable sulfate reducers (up to 2 x 105 cells ml-1) were recorded in the littoral sediments adjacent to the mouth of the Son River and sewage discharge. It was apparently caused by the input of allochthonous organic substrates and also by a high environmental temperature. On an areal basis, sulfate reduction rate in the water was approximately 8 times higher than that in the profundal sediments. Sulfate reduction was the most important process of anaerobic oxidation of organic carbon in Lake Shira. In summer in the profundal zone of the lake, sulfate reducers were able to mineralize about 67% of the daily integrated primary production of phototrophic and chemotrophic organisms.  相似文献   
996.
The purpose of this research was to enhance the bioactivity of insulin by the pulmonary route using a combination of absorption promoters. Aliquots (100 μL) containing 1.0 IU/kg to 7.0 IU/kg doses of porcine insulin solutions with different classes of absorption promoters and combinations of these at 3 concentration levels were instilled intratracheally to the anesthetized rats. Blood concentrations of glucose were measured at specific time points. Out of 3 concentration levels of each of the absorption promoters used, the formulations having the leastconcentration with the maximum percentage of blood glucose reduction were selected for combining absorption promoters, and their pharmacodynamic parameters related to insulin absorption were determined. The pharmacodynamics of porcine insulin following subcutaneous administration of increasing doses were also determined. The relative pulmonary bioactivity of insulin in phosphate buffer pH 7.4 and citrate buffer pH 3.5 was 11.36%±1.27% and 43.20% ±2.48%, respectively, compared to subcutaneous administration. Relative pulmonary bioactivity of 155.60%±5.19% was obtained when oleic acid sodium salt, sodium tauroglycocholate, bestatin, and chymostatin were coadministered in citrate buffer pH 3.5 solution. However, only 61.91%±3.21, 67.09%±3.23%, 67.24%±2.11%, and 69.84%±3.02% were obtained, respectively, upon incorporation of these absorption promoters individually. Absorption promoters in combination have significant potential for increasing the pulmonary bioactivity of insulin. These studies support the argument that pulmonary administration of insulin is a viable alternative to subcutaneous administration for diabetic patients.  相似文献   
997.
Aggregate formation and the structure of the aggregates of disulfide-reduced proteins were investigated using -lactalbumin and lysozyme as model proteins. First, reducing conditions were adjusted so that only one of the four disulfide bonds present in each native protein was cleaved. These three-disulfide (3SS) proteins are known to adopt almost native conformations, yet formed precipitates with a basic peptide, lactoferricin, and heparin and heparin fragment, respectively, at concentrations at which native proteins mixed with these compounds remained clear. The 3SS-lysozyme also formed precipitates in the absence of these ligands. Thus, subtle structural changes could lead to aggregation. Electron microscopy revealed fibrillar structures in the aggregates of extensively reduced proteins in the absence of ligands but not in their presence, which shows that the reduction of disulfide bonds suffices for fibril formation and that ligands inhibit fibril formation.  相似文献   
998.
The use of the cyclopoid copepods Macrocyclops distinctus (Richard) Megacyclops viridis (Jurine) and Mesocyclops pehpeiensis Hu (Cyclopoida: Cyclopidae) as biological control agents against the dengue vector Aedes albopictus (Skuse) (Diptera: Culicidae) was evaluated. In the laboratory their predatory ability was highest against the younger instars of Ae. albopictus and none of the three copepods killed the fourth instar. Except for M. viridis, predatory ability was affected by the size of the container: the smaller the container, the higher the predation. A 4-month field test was conducted to examine the impact of these predators on wild Ae. albopictus. Thirty artificial containers were placed in a peridomestic area to allow Ae. albopictus colonization. We showed continuous and similar oviposition responses in treated and control containers. The densities of Ae. albopictus showed considerable short-term changes and were much reduced by the copepod species. Macrocyclops and the mixture of all three provided better Ae. albopictus control than either Megacyclops or Mesocyclops alone. When larval densities peaked in the control containers in August and September, the overall reduction due to the copepods was nearly complete. Mesocyclops inoculated alone had the highest population survival. However, the growth and survival of all the copepod species was poor when the three genera were mixed. Based on their performance and survival in the trial, Macrocyclops and Mesocyclops merit consideration as bio-control agents of Ae. albopictus.  相似文献   
999.
1000.
Oxygen uptake in isolated pea thylakoids in the presence of an inhibitor of plastoquinol oxidation by b 6/f-complex dinitrophenylether of 2-iodo-4-nitrothymol (DNP-INT) was studied. The rate of oxygen uptake in the absence of DNP-INT had a distinct maximum at pH 5.0 followed by a decline to pH 6.5 and posterior slow rise, while in the presence of an inhibitor it increased at an increasing pH from 4.5 to 6.5 and then kept close to the rate in its absence up to pH 8.5. Gramicidin D substantially affected the oxygen uptake rate in the absence of DNP-INT, and only slightly in its presence. Such differences pointed to the presence of special oxygen reduction site(s) in photosynthetic electron transport chain `before' cytochrome complex. Oxygen uptake in membrane fragments of Photosystem II (BBY-particles) was low and did not depend on pH. This did not support the participation of QB in oxygen reduction in DNP-INT-treated thylakoids. Oxygen uptake in thylakoids in the presence of DNP-INT was inhibited by DCMU as well as by catalase in whole pH range. The catalase effect indicated that oxygen uptake was the result of dioxygen reduction by electrons derived from water, and that H2O2 was a final product of this reduction. Photoreduction of Cyt c in the presence of DNP-INT was partly inhibited by superoxide dismutase (SOD), and this pointed to superoxide formation. The latter was confirmed by a rise of the oxygen uptake rate in the presence of ascorbate and by suppression of this rise by SOD. Both tests showed that the detectable superoxide radicals averaged 20–25% of potentially formed superoxide radicals the quantity of which was calculated from the oxygen uptake rate. The obtained data implies that the oxygen reduction takes place in a plastoquinone pool and occurs mainly inside the membrane, where superoxide can be consumed in concomitant reactions. A scheme for oxygen reduction in a plastoquinone pool in thylakoid membranes is proposed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号