全文获取类型
收费全文 | 10900篇 |
免费 | 752篇 |
国内免费 | 594篇 |
专业分类
12246篇 |
出版年
2024年 | 47篇 |
2023年 | 247篇 |
2022年 | 419篇 |
2021年 | 454篇 |
2020年 | 415篇 |
2019年 | 433篇 |
2018年 | 453篇 |
2017年 | 337篇 |
2016年 | 332篇 |
2015年 | 433篇 |
2014年 | 452篇 |
2013年 | 643篇 |
2012年 | 329篇 |
2011年 | 374篇 |
2010年 | 277篇 |
2009年 | 392篇 |
2008年 | 392篇 |
2007年 | 452篇 |
2006年 | 392篇 |
2005年 | 345篇 |
2004年 | 298篇 |
2003年 | 308篇 |
2002年 | 273篇 |
2001年 | 176篇 |
2000年 | 169篇 |
1999年 | 197篇 |
1998年 | 209篇 |
1997年 | 184篇 |
1996年 | 196篇 |
1995年 | 186篇 |
1994年 | 192篇 |
1993年 | 184篇 |
1992年 | 184篇 |
1991年 | 161篇 |
1990年 | 151篇 |
1989年 | 148篇 |
1988年 | 116篇 |
1987年 | 132篇 |
1986年 | 119篇 |
1985年 | 164篇 |
1984年 | 168篇 |
1983年 | 111篇 |
1982年 | 116篇 |
1981年 | 115篇 |
1980年 | 83篇 |
1979年 | 89篇 |
1978年 | 50篇 |
1977年 | 43篇 |
1976年 | 39篇 |
1975年 | 21篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Gill morphometrics of the thresher sharks (Genus Alopias): Correlation of gill dimensions with aerobic demand and environmental oxygen 下载免费PDF全文
Gill morphometrics of the three thresher shark species (genus Alopias) were determined to examine how metabolism and habitat correlate with respiratory specialization for increased gas exchange. Thresher sharks have large gill surface areas, short water–blood barrier distances, and thin lamellae. Their large gill areas are derived from long total filament lengths and large lamellae, a morphometric configuration documented for other active elasmobranchs (i.e., lamnid sharks, Lamnidae) that augments respiratory surface area while limiting increases in branchial resistance to ventilatory flow. The bigeye thresher, Alopias superciliosus, which can experience prolonged exposure to hypoxia during diel vertical migrations, has the largest gill surface area documented for any elasmobranch species studied to date. The pelagic thresher shark, A. pelagicus, a warm‐water epi‐pelagic species, has a gill surface area comparable to that of the common thresher shark, A. vulpinus, despite the latter's expected higher aerobic requirements associated with regional endothermy. In addition, A. vulpinus has a significantly longer water–blood barrier distance than A. pelagicus and A. superciliosus, which likely reflects its cold, well‐oxygenated habitat relative to the two other Alopias species. In fast‐swimming fishes (such as A. vulpinus and A. pelagicus) cranial streamlining may impose morphological constraints on gill size. However, such constraints may be relaxed in hypoxia‐dwelling species (such as A. superciliosus) that are likely less dependent on streamlining and can therefore accommodate larger branchial chambers and gills. J. Morphol. 276:589–600, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
102.
Lipids are essential for mammalian cells to maintain many physiological functions. Emerging evidence has shown that cancer cells can develop specific alterations in lipid biosynthesis and metabolism to facilitate their survival and various malignant behaviors. To date, the precise role of cellular lipids and lipid metabolism in viral oncogenesis is still largely unclear with only a handful of literature covering this topic to implicate lipid metabolism in oncogenic virus associated pathogenesis. In this review, we focus on the role of lipid biosynthesis and metabolism in the pathogenesis of the Kaposi’s sarcoma-associated herpesvirus, a common causative factor for cancers arising in the immunocompromised settings.
相似文献
103.
Roberto C. Molina-Quiroz Cecilia A. Silva Cristian F. Molina Lorenzo E. Leiva Sebastián Reyes-Cerpa Inés Contreras Carlos A. Santiviago 《Open biology》2015,5(10)
It has been proposed that sub-inhibitory concentrations of antibiotics play a role in virulence modulation. In this study, we evaluated the ability of Salmonella enterica serovar Typhimurium (hereafter S. Typhimurium) to colonize systemically BALB/c mice after exposure to a sub-inhibitory concentration of cefotaxime (CTX). In vivo competition assays showed a fivefold increase in systemic colonization of CTX-exposed bacteria when compared to untreated bacteria. To identify the molecular mechanisms involved in this phenomenon, we carried out a high-throughput genetic screen. A transposon library of S. Typhimurium mutants was subjected to negative selection in the presence of a sub-inhibitory concentration of CTX and genes related to anaerobic metabolism, biosynthesis of purines, pyrimidines, amino acids and other metabolites were identified as needed to survive in this condition. In addition, an impaired ability for oxygen consumption was observed when bacteria were cultured in the presence of a sub-inhibitory concentration of CTX. Altogether, our data indicate that exposure to sub-lethal concentrations of CTX increases the systemic colonization of S. Typhimurium in BALB/c mice in part by the establishment of a fitness alteration conducive to anaerobic metabolism. 相似文献
104.
Seiya Watanabe Yuki Utsumi Shigeki Sawayama Yasuo Watanabe 《Bioscience, biotechnology, and biochemistry》2016,80(11):2151-2158
d-xylose and l-arabinose are the major constituents of plant lignocelluloses, and the related fungal metabolic pathways have been extensively examined. Although Pichia stipitis CBS 6054 grows using d-arabinose as the sole carbon source, the hypothetical pathway has not yet been clarified at the molecular level. We herein purified NAD(P)H-dependent d-arabinose reductase from cells grown on d-arabinose, and found that the enzyme was identical to the known d-xylose reductase (XR). The enzyme activity of XR with d-arabinose was previously reported to be only 1% that with d-xylose. The kcat/Km value with d-arabinose (1.27 min?1 mM?1), which was determined using the recombinant enzyme, was 13.6- and 10.5-fold lower than those with l-arabinose and d-xylose, respectively. Among the 34 putative sugar transporters from P. stipitis, only seven genes exhibited uptake ability not only for d-arabinose, but also for d-glucose and other pentose sugars including d-xylose and l-arabinose in Saccharomyces cerevisiae. 相似文献
105.
人源FGF-21在脂肪细胞糖代谢中的作用 总被引:1,自引:0,他引:1
近年来研究发现,成纤维细胞生长因子(FGF)-21是一种新的代谢调节因子.为了深入研究人源FGF-21(hFGF-21)的生物活性,本实验利用SUMO高效表达载体,高效表达成熟的hFGF-21,并利用小鼠3T3-L1脂肪细胞检测hFGF-21的糖代谢活性.实验结果表明,hFGF-21可促进脂肪细胞的葡萄糖吸收,且葡萄糖吸收效率呈剂量依赖性.hFGF-21作用4 h即可促进脂肪细胞糖吸收,其活性可持续24 h以上.hFGF-21与胰岛素共同作用的葡萄糖吸收效果,明显优于它们的单独作用结果,说明hFGF-21与胰岛素发挥协同作用.脂肪细胞经hFGF-21预处理后,显著增加了胰岛素促进脂肪细胞吸收葡萄糖的效率,说明hFGF-21可以增加胰岛素的敏感性.本实验为临床应用hFGF-21治疗糖尿病,增加胰岛素敏感性提供了依据. 相似文献
106.
Isolated epidermis of Commelina communis L. and Tulipa gesneriana L. assimilated 14CO2 into malic acid and its metabolites but not into sugars or their phosphates; epidermis could not reduce CO2 by photosynthesis and therefore must be heterotrophic (Raschke and Dittrich, 1977). If, however, isolated epidermis of Commelina communis was placed on prelabelled mesophyll (obtained by an exposure to 14CO2 for 10 min), radioactive sugars appeared in the epidermis, most likely by transfer from the mesophyll. Of the radioactivity in the epidermis, 60% was in sucrose, glucose, fructose, 3-phosphoglyceric acid and sugar phosphates. During a 10-min exposure to 14CO2, epidermis in situ incorporated 16 times more radioactivity than isolated epidermal strips. Isolated epidermis of Commelina communis and Tulipa gesneriana took up 14C-labelled glucose-1-phosphate (without dephosphorylation), glucose, sucrose and maltose. These substances were transformed into other sugars and, simultaneously, into malic acid. Carbons-1 through-3 of malic acid in guard cells can thus be derived from sugars. Radioactivity appeared also in the hydrolysate of the ethanol-insoluble residue and in compounds of the tricarboxylic-acid cycle, including their transamination products. The hydrolysate contained glucose as the only radioactive compound. Radioactivity in the hydrolysate was therefore considered an indication of starch. Starch formation in the epidermis began within 5 min of exposure to glucose-1-phosphate. Autoradiograms of epidermal sections were blackened above the guard cells. Formation of starch from radioactive sugars therefore occurred predominantly in these cells. Epidermis of tulip consistently incorporated more 14C into malic and aspartic acids than that of Commelina communis (e.g. after a 4-h exposure to [14C]glucose in the dark, epidermis, with open stomata, of tulip contained 31% of its radioactivity in malate and aspartate, that of Commelina communis only 2%). The results of our experiments allow a merger of the old observations on the involvement of starch metabolism in stomatal movement with the more recent recognition of ion transfer and acid metabolism as causes of stomatal opening and closing.Abbreviation G-1-P
glucose-1-phosphate 相似文献
107.
Esteban Sánchez Pablo C. Garcia Luis R. López-Lefebre Rosa M. Rivero Juan Manuel Ruiz Luis Romero 《Plant Growth Regulation》2002,36(3):261-265
The objective of the present work was to determine the impact ofnitrogen deficiency on proline metabolism in French Bean plants(Phaseolus vulgaris L. cv. Strike). The nitrogen wasapplied to the nutrient solution in the form of NH4NO3 at1.45 mM (N1), 2.90mM (N2) and 5.80mM (N3, optimal level). Our results indicateNdeficiency is characterised by a decline in proline accumulation both in theroot and leaves, fundamentally because proline degradation is encouraged by thestimulation of the enzyme proline dehydrogenase. By contrast, under conditionsof adequate N (N3), proline levels rise due to the action of ornithine,suggesting predominance of the ornithine pathway over the glutamine pathway, inaddition to the inhibition of proline dehydrogenase activity. 相似文献
108.
Effects of temperature on larval fish swimming performance: the importance of physics to physiology 总被引:6,自引:0,他引:6
Temperature influences both the physiology offish larvae and the physics of the flow conditions under which they swim. For small larvae in low Reynolds number (Re) hydrodynamic environments dominated by frictional drag, temperature‐induced changes in the physics of water flow have the greatest effect on swimming performance. For larger larvae, in higher Re environments, temperature‐induced changes in physiology become more important as larvae swim faster and changes in swimming patterns and mechanics occur. Physiological rates at different temperatures have been quantified using Q10s with the assumption that temperature only affected physiological variables. Consequently, Q10s that did not consider temperature‐induced changes in viscosity overestimated the effect of temperature on physiology by 58% and 56% in cold‐water herring and cod larvae respectively. In contrast, in warm‐water Danube bleak larvae, Q10s overestimated temperature‐induced effects on physiology by only 5–7%. This may be because in warm water, temperature‐induced changes affect viscosity to a smaller degree than in cold water. Temperature also affects muscle contractility and efficiency and at high swimming velocities, efficiency decreases more rapidly in cold‐exposed than in warm‐exposed muscle fibres. Further experiments are needed to determine whether temperature acts differently on swimming metabolism in different thermal environments. While hydrodynamic factors appear to be very important to larval fish swimming performance in cold water, they appear to lose importance in warm water where temperature effects on physiology dominate. This may suggest that major differences exist among locomotory capacities of larval fish that inhabit cold, temperate waters compared to those that live in warm tropical waters. It is possible that fish larvae may have developed strategies that affect dispersal and recruitment in different aquatic habitats in order to cope not only with temperature‐induced physiological challenges, but physical challenges as well. 相似文献
109.
Specific activities of eight enzymes involved in glycerol metabolism were determined in crude extracts of three strains ofNeurospora crassa after growth on six different carbon sources. One of the strains was wild type, which grew poorly on glycerol as sole carbon source; the other two were mutant strains which were efficient glycerol utilizers. A possible basis for this greater effeciency of glycerol utilization was catabolite repression of glyceraldehyde kinase by glycerol in wild type, and two-fold higher glycerate kinase activity in the mutant strains after growth on glycerol, thus apparently allowing two routes for glyceraldehyde to enter the glycolytic pathway in the mutant strains but only one in wild type. The preferential entry of glyceraldehyde to the glycolytic pathway through glycerate was suggested by the lack of glyceraldehyde kinase in all three strains after growth on one or more of the carbon sources and the generally higher levels of aldehyde dehydrogenase and of glycerate kinase than of glyceraldehyde kinase. 相似文献
110.
C. W. Parker D. S. Letham B. I. Gollnow R. E. Summons C. C. Duke J. K. MacLeod 《Planta》1978,142(3):239-251
[3H]zeatin was supplied through the transpiration stream to de-rooted lupin (Lupinus angustifolius L.) seedlings. The following previously known metabolites were identified chromatographically: 5-phosphates of zeatin riboside and dihydrozeatin riboside, adenosine-5-phosphate, zeatin riboside, zeatin-7-glucopyranoside, zeatin-9-glucopyranoside, adenine, adenosine and dihydrozeatin. Five new metabolites were purified; four of these contain an intact zeatin moiety. Two were identified unequivocally, one as l--[6-(4-hydroxy-3-methylbut-trans-2-enylamino)-purin-9-yl]alanine, a metabolite now termed lupinic acid, and the second as O--d-glucopyranosylzeatin. These two compounds were the major metabolites formed when zeatin solution (100 M) was supplied to the de-rooted seedlings. The radioactivity in the xylem sap of intact seedlings, supplied with [3H]zeatin via the roots, was largely due to zeatin, dihydrozeatin and zeatin riboside. When [3H]zeatin (5 M) was supplied via the transpiration stream to de-rooted Lupinus luteus L. seedlings, the principal metabolite in the lamina was adenosine, while in the stem nucleotides of zeatin and adenine were the dominant metabolites. O-Glucosylzeatin and lupinic acid were also detected as metabolites. The level of the latter varied greatly in the tissues of the shoot, and was greatest in the lower region of the stem and in the expanding lamina. Minor metabolites also detected chromatographically were: (a) dihydrolupinic acid, (b) a partially characterized metabolite which appears to be a 9-substituted adenine (also formed in L. angustifolius), (c) glucosides of zeatin riboside and/or dihydrozeatin riboside, and (d) O-glucosyldihydrozeatin. While lupinic acid supplied exogenously to L. luteus leaves underwent little metabolism, chromatographic studies indicated that O-glucosylzeatin was converted to its riboside, the principal metabolite formed, and also to adenosine, zeatin and dihydrozeatin. A thinlayer chromatography procedure for separating zeatin, dihydrozeatin, zeatin riboside and dihydrozeatin riboside is described.Abbreviations Me3Si
trimethylsilyl
- TLC
thin-layer chromatography
- UV
ultraviolet
XXIV=Gordon et al., 1975 相似文献