排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
Summary Cell lines susceptible or resistant to the active antitumor sulfonylurea [N-(4-methylphenylsulfonyl)-N-(4-chlorophenyl)-urea] (LY 181984) were treated with 100 M sulfonylurea for 1 or 3 h followed by monensin for 1 h. With cell lines where growth was inhibited by the active sulfonylurea, swollen Golgi apparatus cisternae following treatment were fewer and smaller than in untreated cells. Overall the volume of monensin-responsive trans cisternae was reduced by about 50% to 75% in cells lines where the antitumor sulfonylurea was growth inhibitory. The swelling response was unaffected by sulfonylurea in sulfonylurea-unresponsive cells. The antitumor-inactive sulfonylurea [N-(4-methylphenylsulfonyl)-N-(phenyl)urea] (LY 181985) was without effect on cisternal swelling with both susceptible and resistant cell lines. The results suggest a response of the trans Golgi apparatus to the active antitumor sulfonylurea that resulted in reduced acidification of the trans Golgi apparatus cisternae. This response appears to be restricted to susceptible cell lines where growth was inhibited by the active antitumor sulfonylurea but not in resistant cell lines where growth was unaffected by the active antitumor sulfonylurea. 相似文献
2.
The cost of herbicide resistance in white-chicory: ecological implications for its commercial release 总被引:2,自引:0,他引:2
C. Lavigne H. Manac'h C. Guyard J. Gasquez 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,91(8):1301-1308
Applications for the commercial release of herbicide-resistant crops, most of them transgenic, are likely to become more frequent in the coming years. The ecological concerns raised by their large scale use call for risk-assessment studies. One of the major issues in such studies is the relative fitness of the resistant line compared to the susceptible when no herbicide is applied since this will largely determine the long-term fate of the resistance gene outside of the field. Here we report on a comparison of a sulfonylurea-resistant line of white-chicory regenerated from a non-mutagenized cell culture with a supposedly isogenic susceptible biotype. The plants were grown in experimental plots at a range of densities in a replacement series. The reproductive output of the plants decreased with increasing density but no significant difference was found between the two lines for any vegetative or reproductive trait at any density. This suggests that no cost is associated with the mutation causing the resistance and that the resistance gene would not be selected against if it escaped to populations of wild chicories. 相似文献
3.
Mathias Schwanstecher Ursula Schaupp Stefan Löser Uwe Panten 《Journal of neurochemistry》1992,59(4):1325-1335
Glibenclamide closes an ATP-sensitive K+ channel (K-ATP channel) by interaction with the sulfonylurea receptor in the plasma membrane of pancreatic B cells and thereby initiates insulin release. Previous studies demonstrated that the Mg2+ complex of ATP decreases glibenclamide binding to the sulfonylurea receptor from pancreatic islets. The aim of the present study was to examine the effect of adenine and guanine nucleotides on binding of sulfonyl-ureas to the cerebral sulfonylurea receptor. For this purpose, binding properties of the particulate and solubilized site from rat or pig cerebral cortex were analyzed. Maximum recovery of receptors in detergent extracts amounted to 40-50%. Specific binding of [3H]glibenclamide to the solubilized receptors corresponded well to specific binding to microsomes. In microsomes and detergent extracts, the Mg2+ complexes of ATP, ADP, GTP, and GDP inhibited binding of [3H]glibenclamide. These effects were not observed in the absence of Mg2+. In detergent extracts, Mg-ATP (300 microM) reduced the number of high-affinity sites for [3H]-glibenclamide by 52% and increased the dissociation constant for [3H]glibenclamide by eightfold; Mg-ATP was half-maximally effective at 41 microM. Alkaline phosphatase accelerated the reversal of Mg-ATP-induced inhibition of [3H]glibenclamide binding. The data suggest similar control of the sulfonylurea receptor from brain and pancreatic islets by protein phosphorylation. 相似文献
4.
Prasanna K. Devaraneni Gregory M. Martin Erik M. Olson Qing Zhou Show-Ling Shyng 《The Journal of biological chemistry》2015,290(12):7980-7991
Small molecules that correct protein misfolding and misprocessing defects offer a potential therapy for numerous human diseases. However, mechanisms underlying pharmacological correction of such defects, especially in heteromeric complexes with structurally diverse constituent proteins, are not well understood. Here we investigate how two chemically distinct compounds, glibenclamide and carbamazepine, correct biogenesis defects in ATP-sensitive potassium (KATP) channels composed of sulfonylurea receptor 1 (SUR1) and Kir6.2. We present evidence that despite structural differences, carbamazepine and glibenclamide compete for binding to KATP channels, and both drugs share a binding pocket in SUR1 to exert their effects. Moreover, both compounds engage Kir6.2, in particular the distal N terminus of Kir6.2, which is involved in normal channel biogenesis, for their chaperoning effects on SUR1 mutants. Conversely, both drugs can correct channel biogenesis defects caused by Kir6.2 mutations in a SUR1-dependent manner. Using an unnatural, photocross-linkable amino acid, azidophenylalanine, genetically encoded in Kir6.2, we demonstrate in living cells that both drugs promote interactions between the distal N terminus of Kir6.2 and SUR1. These findings reveal a converging pharmacological chaperoning mechanism wherein glibenclamide and carbamazepine stabilize the heteromeric subunit interface critical for channel biogenesis to overcome defective biogenesis caused by mutations in individual subunits. 相似文献
5.
The properties of acetohydroxy acid synthase (AHAS, EC 4.1.3.18) from wild-type Chlorella emersonii (var. Emersonii, CCAP-211/11n) and two spontaneous sulfometuron methyl (SMM)-resistant mutants were examined. The AHAS from both mutants was resistant to SMM and cross-resistant to imazapyr (IM) and the triazolopyrimidine sulfonanilide herbicide XRD-498 (TP). The more-SMM-resistant mutant had AHAS with altered catalytic parameters (K
m, specificity), but unchanged sensitivity to the feedback inhibitors valine and leucine. The second mutant enzyme was less sensitive to the feedback inhibitors, but had otherwise unchanged kinetic parameters. Inhibition-competition experiments indicated that the three herbicides (SMM, IM, TP) bind in a mutually exclusive manner, but that valine can bind simultaneously with SMM or TP. The three herbicide classes apparently bind to closely overlapping sites. We suggest that the results with C. emersonii and other organisms can all be explained if there are separate binding sites for herbicides, feedback inhibitors and substrates.Abbreviations AHAS
acetohydroxy acid synthase
- AL
acetolactate
- AHB
acetohydroxybutyrate
- IM
imazapyr
- TP
triazolopyrimidine sulfonanilide herbicide XRD-498
- R
enzyme specificity
- SMM
sulfometuron methyl
This research was supported in part by the United States — Israel Binational Science Foundation (BSF), Jerusalem, Israel (Grant 86-00205) and the Fund for Basic Research, Israel Academy of Sciences. 相似文献
6.
7.
Kimoto K Suzuki K Kizaki T Hitomi Y Ishida H Katsuta H Itoh E Ookawara T Suzuki K Honke K Ohno H 《Biochemical and biophysical research communications》2003,303(1):112-119
Oxidative stress is induced under diabetic conditions and possibly causes various forms of tissue damage in patients with diabetes. Recently, it has become aware that susceptibility of pancreatic beta-cells to oxidative stress contributes to the progressive deterioration of beta-cell function in type 2 diabetes. A hypoglycemic sulfonylurea, gliclazide, is known to be a general free radical scavenger and its beneficial effects on diabetic complications have been documented. In the present study, we investigated whether gliclazide could protect pancreatic beta-cells from oxidative damage. One hundred and fifty microM hydrogen peroxide reduced viability of mouse MIN6 beta-cells to 29.3%. Addition of 2 microM gliclazide protected MIN6 cells from the cell death induced by H(2)O(2) to 55.9%. Glibenclamide, another widely used sulfonylurea, had no significant effects even at 10 microM. Nuclear chromatin staining analysis revealed that the preserved viability by gliclazide was due to inhibition of apoptosis. Hydrogen peroxide-induced expression of an anti-oxidative gene heme oxygenase-1 and stress genes A20 and p21(CIP1/WAF1), whose induction was suppressed by gliclazide. These results suggest that gliclazide reduces oxidative stress of beta-cells by H(2)O(2) probably due to its radical scavenging activity. Gliclazide may be effective in preventing beta-cells from the toxic action of reactive oxygen species in diabetes. 相似文献
8.
Da Silva GJ Correia M Vital C Ribeiro G Sousa JC Leitão R Peixe L Duarte A 《FEMS microbiology letters》2002,215(1):33-39
Postbloom fruit drop (PFD) of citrus is caused by Colletotrichum acutatum. PFD isolates infect flower petals, induce abscission of small fruit and can cause severe yield loss on most citrus cultivars. Isolates from Key lime anthracnose (KLA) cause that disease on the Mexican lime, but also cause PFD on sweet orange. Both PFD and KLA isolates exhibited resistance to the common selection agents including hygromycin, bialaphos, benomyl and geneticin/G418. A genetic transformation system was developed for C. acutatum to confer resistance to sulfonylurea (chlorimuron ethyl) by expressing an acetolactate synthase gene (sur) cassette from Magnaporthe grisea. The protocol was tested on 11 different KLA and PFD isolates. The transformation frequencies were highly variable among isolates and among experiments (0-17.9 per microg circular DNA using 10(7) protoplasts). Southern blot analysis of transformants indicated that the plasmid vector was randomly integrated in multiple copies into the genome of C. acutatum. Addition of restriction enzymes or use of a vector with homologous sequences did not change the transformation frequencies, but tended to reduce the number integrated. Over 97% of the transformants retained the sulfonylurea resistance phenotype under non-selective conditions. Of 300 transformants tested, three were unable to cause necrotic lesions on detached Key lime leaves. The transformation method opens up opportunities for the genetic manipulation of C. acutatum. 相似文献
9.
Pierre J. Charest Jiro Hattori Janice DeMoor V. N. Iyer Brian L. Miki 《Plant cell reports》1990,8(11):643-646
Summary Genes coding for the enzyme acetohydroxyacid synthase, often referred to as acetolactate synthase (AHAS, ALS; EC 4.1.3.18), from wild type Arabidopsis thaliana and a sulfonylurea-resistant mutant line GH50 (csrl-1; Haughn et al. 1988) were introduced in Nicotiana tabacum. Both genes were expressed at high levels with the 35S promoter. The csrl-1 gene conferred high levels of resistance to chlorsulfuron whereas the wild type gene did not. As selectable markers, chimaeric AHAS genes yielded transgenic plants on chlorsulfuron but at much lower efficiencies than with a chimaeric neomycin phosphotransferase gene on kanamycin (Sanders et al. 1987). Shoot differentiation from leaf discs was delayed on chlorsulfuron by 4–6 weeks. This study indicated a role for mutant AHAS genes in the genetic manipulation of herbicide resistance in transgenic plants but as selectable markers for plant cells undergoing differentiation no advantage over other genes was perceived. 相似文献
10.
Blockade of the CFTR chloride channel by glibenclamide was studied in Xenopus oocytes using two-electrode voltage-clamp recordings, macropatch recordings, and summations of single-channel currents, in order to test a kinetic model recently developed by us from single-channel experiments. Both the forward and reverse macroscopic reactions, at negative and positive membrane potential VM, respectively, were slow in comparison to those reactions for other CFTR pore blockers such as DPC and NPPB, resulting in prominent relaxations on the order of tens of milliseconds. The rate of the reverse reaction was voltage-dependent, and dependent on the Cl– driving force, while that of the forward reaction was not. In inside-out macropatches, block and relief from block occurred in two distinct phases that differed in apparent affinity. The results are consistent with the presence of multiple glibenclamide binding sites in CFTR, with varying affinity and voltage dependence; they support the kinetic model and suggest experimental approaches for identification of those sites by mutagenesis. 相似文献