首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5592篇
  免费   155篇
  国内免费   217篇
  5964篇
  2024年   7篇
  2023年   37篇
  2022年   34篇
  2021年   59篇
  2020年   68篇
  2019年   72篇
  2018年   86篇
  2017年   68篇
  2016年   76篇
  2015年   82篇
  2014年   122篇
  2013年   199篇
  2012年   97篇
  2011年   159篇
  2010年   108篇
  2009年   195篇
  2008年   215篇
  2007年   234篇
  2006年   200篇
  2005年   209篇
  2004年   185篇
  2003年   199篇
  2002年   194篇
  2001年   139篇
  2000年   140篇
  1999年   147篇
  1998年   150篇
  1997年   142篇
  1996年   155篇
  1995年   144篇
  1994年   131篇
  1993年   170篇
  1992年   146篇
  1991年   158篇
  1990年   142篇
  1989年   141篇
  1988年   125篇
  1987年   115篇
  1986年   124篇
  1985年   123篇
  1984年   127篇
  1983年   74篇
  1982年   124篇
  1981年   104篇
  1980年   79篇
  1979年   54篇
  1978年   26篇
  1977年   31篇
  1976年   26篇
  1975年   11篇
排序方式: 共有5964条查询结果,搜索用时 10 毫秒
91.
Z. Rengel 《Plant and Soil》1990,128(2):185-189
Ammonium acetate and BaCl2-triethanolamine were used to desorb Mg2+ from the root Donnan free space (DFS) of 23-d-old ryegrass (Lolium multiflorum Lam. cvs. Gulf and Wilo). Amounts of desorbed Mg2+ increased with the increase in Mg2+ activity of the nutrient solution. Slightly less Mg2+ was desorbed by Ba2+ than by NH4 +. Previously published data on short-term net Mg2+ uptake by intact 23-d-old ryegrass plants of the two cultivars were linearly related to the amount of exchangeable Mg+ desorbed from the root DFS (r2=0.90 and 0.81 for the desorption by NH4 + and Ba2+, respectively). A sward of Mg2+ ions attracted to the negative charges of the cell surface is suggested to represent a part of a pool of Mg2+ available for active transport through the plasmalemma.  相似文献   
92.
Nitrate uptake and leaching were measured during one year in a declined fir forest on the Vosges highlands (eastern France), in order to investigate whether excess nitrification could be responsible for a deleterious acidification of the ecosystem. Nitrate uptake by the vegetation was active mainly from spring to early fall, and then reached about 66 kg N ha-1. No significant leaching loss occurred during the growth period of the vegetation. Significant nitrate leaching occurred in winter (about 17 kg N ha-1). During fall and winter the nitrification rate was of the same magnitude as values reported for other ecosystems, and, thus, was not considered to be abnormaly strong. No abnormal temporal discoupling of nitrate production and nitrate uptake occurred in the ecosystem, and forest decline must therefore have some other cause.  相似文献   
93.
Fertilizers labelled with 32P were used to measure amounts of phosphorus, Ps and PF, taken up by Lolium perenne from available soil P and from P fertilizer respectively, when applied at a rate of 66 mg P·(kg soil–1) in greenhouse experiments. The quantity Ps of phosphorus taken up from soil in the presence of P fertilizer was compared to the quantity Po taken up from soil without P fertilizer. The quantity (Ps–Po) is positive for low Po values, i.e. in soils poor in available phosphorus, but is negative for high Po values indicating that an input of P fertilizer can induce a decrease in the utilization of available soil phosphorus. Moreover, for a given soil, the quantity (Ps–Po) depends on the chemical form of the fertilizer. The standard method of evaluation of P fertilizer efficiency is based on the assumption that Ps=Po, but Ps can differ from Po. This result can explain the contradictory data published from field experiments about the efficiency of the various P fertilizers.  相似文献   
94.
S. Kuo 《Plant and Soil》1990,126(2):177-186
Zinc sorption by soils can greatly affect its availability to plants. This study was conducted to determine the relationship between the Zn sorption capacity and plant Zn accumulation in five sludge-amended soils using Swiss chard (Beta vulgaris L.) as an indicator plant. Zinc sorption as a function of Zn concentration and pH was determined for the soils which received no sludge amendment; also DTPA (diethylenetriaminepentaacetic acid) extractable Zn was determined in all soils. Whereas the responses of DTPA-Zn and plant Zn to pH and the quantities of Zn sorbed were similar, the logarithm of DTPA-Zn accounted for only 82% of the variability in the logarithm of Zn accumulation by the plants. The variability was better explained when pH was included with DTPA-Zn in stepwise multiple regressions. The Zn buffering capacity, defined as the ratio of the change in quantity of Zn sorbed ( Zns) to the change in Zn solution concentration (Zn1) (or Zns/Zn1), and the estimated quantity of Zn sorbed were used as a basis to measure Zn intensity. Zinc intensity, which reflects Zn solution concentration, was the predominant factor controlling Zn accumulation by Swiss chard, judging from the good fit of the values of both parameters to the Michaelis-Menten equation. The maximum Zn accumulation was approximately 9 mmol kg–1.Scientific paper no. 8901-29, Department of Agronomy and Soils, College of Agriculture and Home Economics Research Center. Washington State University, Pullman, WA 99164, USA.Scientific paper no. 8901-29, Department of Agronomy and Soils, College of Agriculture and Home Economics Research Center. Washington State University, Pullman, WA 99164, USA.  相似文献   
95.
Graminaceous species can enhance iron (Fe) acquisition from sparingly soluble inorganic Fe(III) compounds by release of phytosiderophores (PS) which mobilize Fe(III) by chelation. In most graminaceous species Fe deficiency increases the rate of PS release from roots by a factor of 10–20, but in some species, for example sorghum, this increase is much less. The chemical nature of PS can differ between species and even cultivars.The various PS are similarly effective as the microbial siderophore Desferal (ferrioxamine B methane sulfonate) in mobilizing Fe(III) from a calcareous soil. Under the same conditions the synthetic chelator DTPA (diaethylenetriamine pentaacetic acid) is ineffective.The rate of Fe(III)PS uptake by roots of graminaceous species increases by a factor of about 5 under Fe deficiency. In contrast, uptake of Fe from both synthetic and microbial Fe(III) chelates is much lower and not affected by the Fe nutritional status of the plants. This indicates that in graminaceous species under Fe deficiency a specific uptake system for FePS is activated. In contrast, the specific uptake system for FePS is absent in dicots. In a given graminaceous species the uptake rates of the various FePS are similar, but vary between species by a factor of upto 3. In sorghum, despite the low rate of PS release, the rate of FePS uptake is particularly high.The results indicate that release of PS and subsequent uptake of FePS are under different genetic control. The high susceptibility of sorghum to Fe deficiency (lime-chlorosis) is most probably caused by low rates of PS release in the early seedling stage. Therefore in sorghum, and presumably other graminaceous species also, an increase in resistance to lime chlorosis could be best achieved by breeding for cultivars with high rates of PS release. In corresponding screening procedures attention should be paid to the effects of iron nutritional status and daytime on PS release as well as on rapid microbial degradation of PS.  相似文献   
96.
Several indexes are used to determine the iron nutritional status of plants, but their effectiveness depends either on the plant growth conditions in natural environments or on the assay conditions. This research was conducted to test different indexes of the iron nutritional status of a hydroponic strawberry culture where treatments mainly differed in the source of the iron applied: Fe-EDTA, Fe-EDDHA and Fe-polyflavonoid. Macro and micronutrient concentrations in the nutrient solutions, leaf and vascular tissues were measured. Fe concentration in the nutrient solution during the course of the experiment was considered in relation to the stability of the different chelates. Both Fe concentration and total Fe content of leaves reflected the effect of the treatments; Fe/Mn ratio was significant as a diagnosis index. Other element ratios as P/Fe and K/Ca are not well related with the iron nutrition symptoms observed. Fe2+ concentration measured in leaves was not directly affected by the different chelate treatments.  相似文献   
97.
The long arm of chromosome 4D of wheat (Triticum aestivum L.) contains a gene (or genes) which influences the ability of wheat plants to discriminate between Na+ and K+. This discrimination most obviously affects transport from the roots to the shoots, in which less Na+ and more K+ accumulate in those plants which contain the long arm of chromosome 4D. Concentrations of Na+ and K+ in the roots, and Cl concentrations in the roots and shoots, are not significantly affected by this trait, but Na+, K+ and Cl contents of the grain are reduced. The trait operates over a wide range of salinities and appears to be constitutive. At the moment it is not possible to determine accurately the effect of this trait on growth or grain yield because the aneuploid lines which are available are much less vigorous and less fertile than their euploid parents.  相似文献   
98.
The loading of amino acids and nitrate into the xylem was investigated by collection and analysis of root-pressure exudate from the cut hypocotyl stumps of seedlings of Ricinus communis L. Glutamine was found to be the dominant amino acid in the exudate and also to be the amino acid which is transferred to the xylem most rapidly and accumulated to the greatest extent. The comparison between uptake and xylem loading showed significant differences in specificity between these two transport reactions, indicating a different set of transport systems. Nitrate is transferred to the xylem at a higher relative rate than any amino acid despite the great nitrate-storage capacity of the root system. Thus the supply of nitrate to Ricinus plants leads to enhanced nitrogen allocation to the shoots.  相似文献   
99.
Sprague-Dawley rats were given treatments, known to decrease 22Na movement into choroid plexus and CSF, to investigate their effect on 22Na transfer across the cerebral capillaries. Acidic salts, acetazolamide, or amiloride was injected intraperitoneally into bilaterally nephrectomized rats, and the rate of 22Na uptake into parietal cortex, pons-medulla, and CSF was determined at 12, 18, and 24 min. Severe acidosis (arterial pH 7.2), produced by HCl injection, decreased the rate of 22Na entry into both brain regions and CSF by 25%, whereas mild acidosis (pH 7.3) from NH4Cl injection reduced brain entry by 18%, but CSF entry by only 10%. Like HCl acidosis, amiloride reduced transport into both brain and CSF by 22%. Penetration of 22Na into parietal cortex was unchanged by acetazolamide, but that into CSF was slowed 30%. Since uptake of 22Na into cortical regions is primarily movement of tracer across the cerebral capillaries when tracer uptake time is less than 30 min, the results indicate that both metabolic acidosis and amiloride decrease Na+ permeativity at the cerebral capillaries as well as at the choroid plexus. Acetazolamide, on the other hand, alters Na+ movement only across the choroidal epithelium.  相似文献   
100.
Summary 2-Deoxy-d-glucose (2-DOG) uptake was tested in human fibroblast cultures in the presence and absence of vitamin E. Addition of 10 μg/ml vitamin E to the culture medium significantly reduced this uptake for 2-DOG concentrations of 0.005, to 10 mmol/liter (P≤0.01). The decrease of 2-DOG uptake was inversely proportional to the rise in 2-DOG concentration (P≤0.01). The presence of vitamin E reduced by 71% the average cellular level of lipid peroxides (expressed as thiobarbituric acid reactive substances) and caused a small but significant decrease in the cholesterol concentration (P≤0.01). These last results might explain the decrease in 2-DOG uptake observed in the presence of vitamin E.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号