首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2835篇
  免费   384篇
  国内免费   78篇
  2024年   32篇
  2023年   188篇
  2022年   110篇
  2021年   175篇
  2020年   168篇
  2019年   217篇
  2018年   181篇
  2017年   149篇
  2016年   114篇
  2015年   151篇
  2014年   164篇
  2013年   244篇
  2012年   141篇
  2011年   104篇
  2010年   88篇
  2009年   81篇
  2008年   95篇
  2007年   98篇
  2006年   85篇
  2005年   61篇
  2004年   76篇
  2003年   62篇
  2002年   60篇
  2001年   38篇
  2000年   32篇
  1999年   34篇
  1998年   28篇
  1997年   25篇
  1996年   36篇
  1995年   27篇
  1994年   25篇
  1993年   25篇
  1992年   20篇
  1991年   27篇
  1990年   14篇
  1989年   15篇
  1988年   14篇
  1987年   11篇
  1986年   7篇
  1985年   4篇
  1984年   8篇
  1983年   6篇
  1982年   14篇
  1981年   8篇
  1980年   15篇
  1979年   6篇
  1978年   6篇
  1977年   3篇
  1973年   1篇
  1972年   1篇
排序方式: 共有3297条查询结果,搜索用时 171 毫秒
121.
《Organogenesis》2013,9(3):289-298
A recent paper demonstrated that decellularized extracellular matrix (DECM) deposited by synovium-derived stem cells (SDSCs), especially from fetal donors, could rejuvenate human adult SDSCs in both proliferation and chondrogenic potential, in which expanded cells and corresponding culture substrate (such as DECM) were found to share a mutual reaction in both elasticity and protein profiles (see ref. 1 Li J, Hansen K, Zhang Y, Dong C, Dinu C, Dzieciatkowska M, Pei M. Rejuvenation of chondrogenic potential in a young stem cell microenvironment. Biomaterials 2014; 35:642-53; PMID: 24148243; http://dx.doi.org/10.1016/j.biomaterials.2013.09.099[Crossref], [PubMed], [Web of Science ®] [Google Scholar]). It seems that young DECM may assist in the development of culture strategies that optimize proliferation and maintain “stemness” of mesenchymal stem cells (MSCs), helping to overcome one of the primary difficulties in MSC-based regenerative therapies. In this paper, the effects of age on the proliferative capacity and differentiation potential of MSCs are reviewed, along with the ability of DECM from young cells to rejuvenate old cells. In an effort to highlight some of the potential molecular mechanisms responsible for this phenomenon, we discuss age-related changes to extracellular matrix (ECM)'s physical properties and chemical composition.  相似文献   
122.
《Autophagy》2013,9(11):1989-2005
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.  相似文献   
123.
Numbers of emerging evidence suggest that variable microRNA (miRNA) expression facilitates the aging process. In this study, we distinguished aberrant miRNA expression in aged skin and explored the biological functions and potential mechanism of upregulated miR-302b-3p. At first, miRNA microarray analysis was examined to explore miRNA expression profiling in the skin of aging mice model by D -galactose (d -gal) injection. We identified 29 aberrant miRNAs in aged mice skin. Next, KEGG enrichment analysis was conducted with DIANA-miPath v3.0, which was revealed that enrichment pathways involved in such processes as extracellular matrix-receptor interaction, MAPK signaling pathway, and mammalian target of rapamycin (mTOR) signaling pathway. The target genes of deregulated miRNAs were predicted from four bioinformatic algorithms (miRDB, Targetscan, miRwalk, and Tarbase). The interaction network of miRNAs and their targets were visualized using Cytoscape software. As a result, we found that some hub genes (including JNK2, AKT1/2/3, PAK7, TRPS1, BCL2L11, and IKZF2) were targeted by 12 potential miRNAs (including miR-302b-3p, miR-291a-5p, miR-139-3p, miR-467c-3p, miR-186-3p, etc.). Subsequently, we identified five upregulated miRNA via quantitative polymerase chain reaction and all of them were confirmed increased significantly in aged skin tissues compared with young control tissues. Among them, high expression of miR-302b-3p was verified in both aged skin tissues and senescence fibroblasts. Furthermore, miR-302b-3p mimic accelerated skin fibroblast senescence and suppressed the longevity-associated gene Sirtuin 1(Sirt1) expression, whereas miR-302b-3p inhibitor could delay skin fibroblast senescence and contribute Sirt1 expression. In addition, we demonstrated that c-Jun N-terminal kinase 2(JNK2) is a direct target of miR-302b-3p by a luciferase reporter assay. An inverse correlation was verified in fibroblasts between miR-302b-3p and JNK2. Most importantly, siRNA JNK2 confirmed that low expression of JNK2 could accelerate fibroblasts senescence. In conclusion, our results indicated that overexpressed miR-302b-3p plays an important biological role in accelerating skin aging process via directly targeting JNK2 gene.  相似文献   
124.
Mitochondrial DNA (mtDNA) encodes proteins and RNAs that support the functions of mitochondria and thereby numerous physiological processes. Mutations of mtDNA can cause mitochondrial diseases and are implicated in aging. The mtDNA within cells is organized into nucleoids within the mitochondrial matrix, but how mtDNA nucleoids are formed and regulated within cells remains incompletely resolved. Visualization of mtDNA within cells is a powerful means by which mechanistic insight can be gained. Manipulation of the amount and sequence of mtDNA within cells is important experimentally and for developing therapeutic interventions to treat mitochondrial disease. This review details recent developments and opportunities for improvements in the experimental tools and techniques that can be used to visualize, quantify, and manipulate the properties of mtDNA within cells.  相似文献   
125.
《Chronobiology international》2013,30(8):1587-1601
Aging can be associated with changes in circadian rhythms and reduction in adaptive immune responses accompanied by expansion of memory T cells and elevated levels of pro-inflammatory cytokines. Recent findings suggest the cytokine interferon-γ (IFN-γ) can affect the function of the hypothalamic suprachiasmatic nucleus (SCN), the master mammalian circadian pacemaker, both in vitro and in vivo. We studied the correlation of plasma levels of IFN-γ and changes in circadian rhythms in a non-human primate species, the nocturnal mouse lemur (Microcebus murinus). Plasma IFN-γ and dehydroepiandrosterone sulfate (DHEA-S), a known biomarker of aging, were determined in middle- to old-age animals by immunoenzymoassay. Daily rhythms of locomotor activity and body temperature as well as survival time of the lemurs were recorded. With aging, mean levels of DHEA-S decreased whereas IFN-γ increased. Aged animals showed biological rhythm alterations characterized by a high percentage of diurnal activity, anticipation of the activity onset relative to lights-off, short free-running period, and delayed occurrence of minimal body temperature. The magnitude of these disturbances was correlated with the plasma level of IFN-γ but not DHEA-S. Most remarkably, in contrast to DHEA-S, increased levels of IFN-γ correlated with duration of the lifetime of the lemurs. These results show the degree of circadian rhythm alterations in an individual is correlated with plasma IFN-γ level during aging, and that plasma IFN-γ level may predict survival, at least in this non-human primate. (Author correspondence: )  相似文献   
126.
Aging and demographic changes in Europe and other global economies have led to a discussion about postponing the legal retirement age; however, health and safety consequences for the workforce have not yet been examined. Thus, the aim of this study was to investigate the effects of lifetime exposure to shiftwork on health impairments and fitness for duty. Two samples of the police force from one of the states of the Federal Republic of Germany were used. One sample was collected in 2008–2009 with a self-administered Internet questionnaire (n?=?705); the other sample was derived from employment records provided by the police force of the same federal state for the years 2002–2009 (n?=?2460). Both samples contained information about the number of years worked in shiftwork across the entire working life and impairments to fitness for duty assessed by occupational physicians. Thus, the number of years of shiftwork until the diagnosis of the first reduction in fitness for duty could be calculated. Survival analyses were performed to estimate the risk (hazard rate) for experiencing a reduction in fitness for duty across lifetime exposure to shiftwork in years, controlling for age, sex, work type, and police district. Hazard estimates were compared across both samples to cross-validate the results. The findings indicated an increase in the risk of reduced fitness for duty with increasing number of years in shiftwork during the working life in both samples. The hazard rates followed an exponential trend, indicating a rapid increase in health impairments in particular beyond 20 yrs of shiftwork. These findings were consistent in both samples, collected with different methods and over different time periods, thus indicating high validity. Therefore, occupational stress factors, such as exposure to shiftwork, need to be taken into account when discussing the postponement of the legal retirement age. (Author correspondence: )  相似文献   
127.
The circadian rhythms of food and water consumption, the number of feeding and drinking episodes, oxygen consumption, carbon dioxide production, respiratory quotient, gross motor activity, and body temperature were measured in male B6C3F, mice that were fed ad libitum (AL) or fed a caloric-restricted diet (CR). The CR regimen (60% of the normal AL consumption) was fed to mice during the daytime (5 hr after lights on). CR animals exhibited fewer feeding episodes but consumed more food per feeding bout and spent more total time feeding than AL mice. It appears that CR caused mice to change from their normal “nibbling behavior” to meal feeding. Compared to AL animals, the mean body temperature was reduced in CR animals, while the amplitude of the body temperature rhythm was increased. Spans of reduced activity, metabolism, and body temperature (torpor) occurred in CR mice for several hours immediately before feeding, during times of high fatty acid metabolism (low RQ). The acute availability of exogenous substrates (energy supplies) seemed to modulate metabolism shifting metabolic pathways to promote energy efficiency. CR was also associated with lower DNA damage, higher DNA repair, and decreased proto-oncogene expression. Most of the circadian rhythms studied seemed to be synchronized primarily to the feeding rather than the photoperiod cycle. Night-time CR feeding was found to be better than daytime feeding because the circadian rhythms for AL and CR animals were highly synchronized when this regimen was used.  相似文献   
128.
Young (21–26 years, n?=?20) and old (55–86 years, n?=?25) participants were tested for their ability to recognize raised letters (6-mm high, 1-mm relief) by touch. Spatial resolution thresholds were also measured with grating domes to derive an index of the degree of afferent innervation at the fingertip. Letter recognition in the young group was very consistent and highly accurate (mean, 86% correct), contrasting with the performance of the old group, which was more variable and comparatively low in accuracy (mean, 53% correct). In both groups, spatial resolution thresholds accounted for a substantial portion of the variance in the performance, suggesting a strong link between age-dependent variations in tactile innervation and recognition accuracy. The patterns of errors in the old group showed that an inability to encode internal elements specific to certain letters was at the source of most confusion among letters. Whether this inability reflected only deficient peripheral encoding mechanisms or some other alterations at the central level is discussed.  相似文献   
129.
130.
This article is addressed to endocrinologists treating patients with diabetic complications as well as to basic scientists studying an elusive link between diseases and aging. It answers some challenging questions. What is the link between insulin resistance (IR), cellular aging and diseases? Why complications such as retinopathy may paradoxically precede the onset of type II diabetes. Why intensive insulin therapy may initially worsen retinopathy. How nutrient- and insulin-sensing mammalian target of rapamycin (mTOR) pathway can drive insulin resistance and diabetic complications. And how rapamycin, at rational doses and schedules, may prevent IR, retinopathy, nephropathy and beta-cell failure, without causing side effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号