首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2514篇
  免费   488篇
  国内免费   1110篇
  2024年   20篇
  2023年   97篇
  2022年   85篇
  2021年   158篇
  2020年   199篇
  2019年   339篇
  2018年   335篇
  2017年   175篇
  2016年   176篇
  2015年   178篇
  2014年   190篇
  2013年   218篇
  2012年   168篇
  2011年   150篇
  2010年   182篇
  2009年   154篇
  2008年   175篇
  2007年   195篇
  2006年   134篇
  2005年   130篇
  2004年   127篇
  2003年   102篇
  2002年   91篇
  2001年   75篇
  2000年   62篇
  1999年   56篇
  1998年   44篇
  1997年   10篇
  1996年   21篇
  1995年   12篇
  1994年   14篇
  1993年   6篇
  1992年   6篇
  1991年   7篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   6篇
  1980年   1篇
  1950年   1篇
排序方式: 共有4112条查询结果,搜索用时 46 毫秒
101.
Abstract

The aptamers with the ability to form a G-quadruplex structure can be stable in the presence of some ions. Hence, study of the interactions between such aptamers and ions can be beneficial to determine the highest selective aptamer toward an ion. In this article, molecular dynamics (MD) simulations and quantum mechanics (QM) calculations have been applied to investigate the selectivity of the T30695 aptamer toward Pb2+ in comparison with some ions. The Free Energy Landscape (FEL) analysis indicates that Pb2+ has remained inside the aptamer during the MD simulation, while the other ions have left it. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding energies prove that the conformational stability of the aptamer is the highest in the presence of Pb2+. According to the compaction parameters, the greatest compressed ion-aptamer complex, and hence, the highest ion-aptamer interaction have been induced in the presence of Pb2+. The contact maps clarify the closer contacts between the nucleotides of the aptamer in the presence of Pb2+. The density functional theory (DFT) results show that Pb2+ forms the most stable complex with the aptamer, which is consistent with the MD results. The QM calculations reveal that the N-H bonds and the O…H distances are the longest and the shortest, respectively, in the presence of Pb2+. The obtained results verify that the strongest hydrogen bonds (HBs), and hence, the most compressed aptamer structure are induced by Pb2+. Besides, atoms in molecules (AIM) and natural bond orbital (NBO) analyses confirm the results.

Communicated by Ramaswamy H. Sarma  相似文献   
102.
Ant–hemipteran mutualisms can have positive and negative effects on host plants depending on the level of hemipteran infestation and plant protection conferred by ants against folivory. Differential effects of such mutualisms on plant survival are well documented in undisturbed and ant-invaded systems, but few have explored how anthropogenic disturbance affects interactions between hemipterans and native ant species and what the consequences may be for recovering ecosystems. Within a fragmented landscape in Costa Rica, restored tropical forests harbor a mutualism between the native ant Wasmannia auropunctata and the scale insect Alecanochiton marquesi on the abundant, early-successional tree Conostegia xalapensis. I added A. marquesi scales to C. xalapensis seedlings and either allowed or excluded W. auropunctata to investigate if this mutualism leads to increased scale infestation, decreased scale mortality, and decreased folivory. I also examined whether these effects are mediated by the percentage of remnant forest cover in the landscape. I found that seedlings with ants excluded had fewer scale insects and higher herbivory than plants with ants present. I also found evidence that scale mortality due to fungal attack and parasitism was higher on ant-excluded versus ant-allowed seedlings but only at sites with high surrounding landscape forest cover. Together, these results suggest that mutualisms between scale insects and native ants can promote scale infestation, reduce folivory on native plant species, and potentially disrupt biological control of scale insects in recovering tropical forests. Further, my experiment underscores the importance of remnant tropical forests as sources of biological control in anthropogenically disturbed landscapes. Abstract in Spanish is available with online material.  相似文献   
103.
Cation-induced conformational changes of peptide as a guide to developing insights into human diseases-related proteins have received a lot of attention. The interactions between poly-l-glutamate (PGA) and different cations, including Na+, K+ and Mg2+, respectively, are studied in solvent at a concentration of 1 M, and the behaviours of peptide with different cations are investigated. For Na+, an oscillatory stabilising process to α-helix PGA is found, in accordance with the uniform free-energy landscape, whereas for K+, an extended α-helix structure is formed by the terminal turns, suggesting a weaker attraction to charged head groups. For Mg2+, the bridged charged side chains are responsible for the maximum probability of helix state. These distinct structural changes can be attributed to the different interactions between charged head groups and cations. Both Na+ and K+ are mainly attracted around head groups by direct ion binding while Mg2+ is centrally trapped among adjacent charged head groups. In addition, a surprising shift of the backbone hydrogen bond, from intact state to intermediate state, is observed. This is opposite to the stabilising effect of Na+ around negatively charged head groups.  相似文献   
104.
Abstract

Reaching the experimental time scale of millisecond is a grand challenge for protein folding simulations. The development of advanced Molecular Dynamics techniques like Replica Exchange Molecular Dynamics (REMD) makes it possible to reach these experimental timescales. In this study, an attempt has been made to reach the multi microsecond simulation time scale by carrying out folding simulations on a three helix bundle protein, Villin, by combining REMD and Amber United Atom model. Twenty replicas having different temperatures ranging from 295 K to 390 K were simulated for 1.5 μs each. The lowest Root Mean Square Deviation (RMSD) structure of 2.5 Å was obtained with respect to native structure (PDB code 1VII), with all the helices formed. The folding population landscapes were built using segment-wise RMSD and Principal Components as reaction coordinates. These analyses suggest the two-stage folding for Villin. The combination of REMD and Amber United Atom model may be useful to understand the folding mechanism of various fast folding proteins  相似文献   
105.
In today’s world, the pursuit of a novel anti-cancer agent remains top priority because of the fact that the global burden of this malady is continuously increasing. Our work is no different from others in searching for new therapeutic solutions. To achieve this, we are looking into Epigenetics, the phenomenon governed by hypermethylation and hypomethylation of tumor suppressor genes and oncogenes, respectively. Our target for this study is an important intermediary methyl-CpG binding protein named kaiso. In our study, we have used the X-ray crystallographic structure of Kaiso for virtual screening and molecular dynamics simulations to study the binding modes of possible inhibitors. The C2H2 domain comprising LYS539 was used for screening the inter bio screen Database having 48,531 natural compounds. Our approach of using computer-aided drug designing methods helped us to remove the execrable compounds and narrowed our focus on a selected few for molecular simulation studies. The top ranked compound (chem. ID 28127) exhibited the highest binding affinity and was also found to be stable throughout the 20 ns timeframe. This compound is therefore a good starting point for developing strong inhibitors.  相似文献   
106.
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein’s dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.  相似文献   
107.
本文研究了华北棉花-玉米农田景观格局中龟纹瓢虫Propylaea japonica(Thunberg)和异色瓢虫Harmonia axyridis(Pallas)种群动态,发现农田景观格局中作物类型(棉花与玉米)对两种瓢虫种群密度动态有显著的影响,两种天敌瓢虫都趋向在玉米斑块上栖息。两种瓢虫在棉花斑块上呈现出时间分化,其中龟纹瓢虫在棉花种植的前中期种群密度较大,后期较少;而异色瓢虫在棉花前中期种群密度较少,后期较多,表明农田景观中种植玉米有利于增强瓢虫对棉花害虫的控制作用。进一步的研究表明,农田景观系统中玉米斑块所占的面积比对龟纹瓢虫和异色瓢虫种群密度均产生显著影响。这说明在农田景观系统中开展区域性生态调控的时候,需要考虑到各类斑块组合的面积比例,从而有利于增强多种天敌昆虫的协调控害作用。  相似文献   
108.
Northern bobwhites thrive in fine-grained landscapes with a diversity of early succession woodland, grassland, and agriculture-associated habitat types. Bobwhite conservation has proved challenging in the increasingly coarse-grained Midwestern landscape as simplified agricultural cropping systems are implemented at larger spatial scales. Regardless, managing agricultural landscapes on private lands is the primary opportunity to restore bobwhite populations in the Midwestern United States. Although bobwhite habitat requirements are well understood, habitat selection in contemporary Midwestern landscapes is not well understood, especially on private lands where populations are declining. We used compositional analysis to investigate second- (study area) and third- (home range) order habitat selection by radiomarked bobwhite coveys on 4 private land study areas in southwestern Ohio. Mean covey home range size was 26.1 ± 2.2 ha (n = 48). Although home ranges were established in areas with more grassland cover, bobwhites most strongly selected early succession woody habitat (e.g., fencerows and ditches) at all scales, and selection for grassland diminished between the study area and home range scales. Grassland selection varied among sites and was strongest on sites with more row crop area. Woodlots were avoided at the study area scale, but were selected within home ranges. Grassland cover, like that provided by contemporary conservation programs, is an essential component of bobwhite habitat in the Midwest, but our results suggest more emphasis should be placed on early succession woody cover. Woody cover associated with fencerows, ditches, and woodlots adjacent to food sources and breeding habitat will likely improve non-breeding season survival, which is an influential vital rate in northern populations. © 2012 The Wildlife Society.  相似文献   
109.
110.
Understanding the effects of landscape heterogeneity on spatial genetic variation is a primary goal of landscape genetics. Ecological and geographic variables can contribute to genetic structure through geographic isolation, in which geographic barriers and distances restrict gene flow, and ecological isolation, in which gene flow among populations inhabiting different environments is limited by selection against dispersers moving between them. Although methods have been developed to study geographic isolation in detail, ecological isolation has received much less attention, partly because disentangling the effects of these mechanisms is inherently difficult. Here, I describe a novel approach for quantifying the effects of geographic and ecological isolation using multiple matrix regression with randomization. I explored the parameter space over which this method is effective using a series of individual‐based simulations and found that it accurately describes the effects of geographic and ecological isolation over a wide range of conditions. I also applied this method to a set of real‐world datasets to show that ecological isolation is an often overlooked but important contributor to patterns of spatial genetic variation and to demonstrate how this analysis can provide new insights into how landscapes contribute to the evolution of genetic variation in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号