首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2514篇
  免费   488篇
  国内免费   1110篇
  2024年   20篇
  2023年   97篇
  2022年   85篇
  2021年   158篇
  2020年   199篇
  2019年   339篇
  2018年   335篇
  2017年   175篇
  2016年   176篇
  2015年   178篇
  2014年   190篇
  2013年   218篇
  2012年   168篇
  2011年   150篇
  2010年   182篇
  2009年   154篇
  2008年   175篇
  2007年   195篇
  2006年   134篇
  2005年   130篇
  2004年   127篇
  2003年   102篇
  2002年   91篇
  2001年   75篇
  2000年   62篇
  1999年   56篇
  1998年   44篇
  1997年   10篇
  1996年   21篇
  1995年   12篇
  1994年   14篇
  1993年   6篇
  1992年   6篇
  1991年   7篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   6篇
  1980年   1篇
  1950年   1篇
排序方式: 共有4112条查询结果,搜索用时 156 毫秒
11.

Aim

To test the influence of historical and contemporary environment in shaping the genetic diversity of freshwater fauna we contrast genetic structure in two co‐distributed, but ecologically distinct, rainbowfish; a habitat generalist (Melanotaenia splendida) and a habitat specialist (M. trifasciata).

Location

Fishes were sampled from far northern Australia (Queensland and Northern Territory).

Methods

We used sequence data from one mitochondrial gene and one nuclear gene to investigate patterns of genetic diversity in M. splendida and M. trifasciata to determine how differences in habitat preference and historical changes in drainage boundaries affected patterns of connectivity.

Results

Melanotaenia splendida showed high levels of genetic diversity and little population structure across its range. In contrast, M. trifasciata showed high levels of population structure. Whereas phylogeographic patterns differed, both species showed a strong relationship between geographical distance and genetic differentiation between populations. Melanotaenia splendida showed a shallower relationship with geographical distance, and genetic differentiation was best explained by stream length and a lower scaled ocean distance (11.98 times coast length). For M. trifasciata, genetic differentiation was best explained by overwater distance between catchments and ocean distance scaled at 1.16 × 106 times coast length.

Main conclusions

Connectivity of freshwater populations inhabiting regions periodically interconnected during glacial periods appears to have been affected by ecological differences between species. Species‐specific differences are epitomized here by the contrast between co‐distributed congeners with different habitat requirements: for the habitat generalist, M. splendida, there was evidence for greater historical genetic connectivity with oceans as a weaker barrier to gene exchange in contrast with the habitat specialist, M. trifasciata.  相似文献   
12.
13.
As an increasingly dominant feature in the landscape, transportation corridors are becoming a major concern for bats. Although wildlife–vehicle collisions are considered to be a major source of mortality, other negative implications of roads on bat populations are just now being realized. Recent studies have revealed that bats, like many other wildlife species, will avoid roads rather than cross them. The consequence is that roads act as barriers or filters to movement, restricting bats from accessing critical resources. Our objective was to assess specific features along the commuting route, road, or surrounding landscape (alone or in combination) that exacerbated or alleviated the likelihood of a commuting bat exhibiting an avoidance behavior in response to an approaching vehicle. At 5 frequently used commuting routes bisected by roads, we collected data on vehicles travelling along the roads (such as visibility and audibility), commuting bats (such as height), and composition of the commuting route. We revealed that commuting route structure dictated the frequency at which bats turned back along their commuting routes and avoided the road. We found that gaps (>2 m) in commuting routes, such as the road itself, caused bats to turn away just before they reached the road. Furthermore, we found that turning frequencies of bats increased with vehicle noise levels and the locations at which bats responded to vehicles corresponded with areas where noise levels were greatest, including gaps <2 m. This suggested that bats had a disturbance threshold, and only reacted to vehicles when associated noise reached a certain level. We found that threshold levels for our study species were approximately 88 dB, but this value was likely to vary among species. Thus, our findings indicate that restoring (e.g., replanting native trees and shrubs in gaps) and establishing commuting routes (such as planting tree-lines and wooded hedgerows), as well as creating road-crossing opportunities (such as interlinking canopies) will improve the permeability of a road-dominated landscape to bats. Furthermore, our study highlights the influence of the soundscape. We recommend that effective management and mitigation strategies should take into account the ecological design of the acoustic environment. © 2012 The Wildlife Society.  相似文献   
14.
pathmatrix is a tool used to compute matrices of effective geographical distances among samples using a least‐cost path algorithm. This program is dedicated to the study of the role of the environment on the spatial genetic structure of populations. Punctual locations (e.g. individuals) or zones encompassing sample data points (e.g. demes) are used in conjunction with a species‐specific friction map representing the cost of movement through the landscape. Matrices of effective distances can then be exported to population genetic software to test, for example, for isolation by distance. pathmatrix is an extension to the geographical information system (GIS) software arcview 3.x.  相似文献   
15.
The body shape of 1303 adult male three-spined stickleback Gasterosteus aculeatus from 118 populations on Haida Gwaii archipelago off the mid-coast of British Columbia was investigated using discriminant function analysis on partial warp scores generated from 12 homologous landmarks on a digital image of each fish. Results demonstrated geographical differences in adult body shape that could be predicted by both abiotic and biotic factors of the habitat. Populations with derived shape (CV1−), including thick peduncles, posterior and closely spaced dorsal spines, anterior pelvis, small dorsal and anal fins, were found in small, shallow, stained ponds, and populations with less derived shape (CV1+), with small narrow peduncles, anterior and widely spaced dorsal spines, posterior pelvis, large dorsal and anal fins were found in large, deep, clear lakes. This relationship was replicated between geographic regions; divergent mtDNA haplotypes in lowland populations; between predation regimes throughout the archipelago, and in each geographical region and between predation regimes in lowland populations monomorphic for the Euro and North American mtDNA haplotype. There were large-bodied populations with derived shape (CV2−), including small heads and shallow elongate bodies in open water habitats of low productivity, and populations with smaller size and less derived shape (CV2+), with large heads and deeper bodies in higher productivity, structurally complex habitats. This relationship was replicated between geographic regions, and partially between divergent mtDNA haplotypes in lowland populations. Field tests for phenotypic plasticity of body shape suggest that <10% of the total variation in body shape among populations throughout the archipelago can be attributed to plasticity.  相似文献   
16.
Regular unscheduled movements of rancherías within a confined area or settlement district result in the phenomenon described as "village drift," a process whereby a settlement may change its location gradually by several kilometers over a period of years. This article presents a model of village drift based on data acquired from recent archaeological and geomorphological field studies and archival research on the Akimel O'odham, the Gila River Pima of south-central Arizona. The model provides an excellent example of human ecodynamics---an emerging landscape perspective that emphasizes the coevolution of humans and their ecosystem---with implications for understanding prehistoric and historic settlement in desert riverine environments.  相似文献   
17.
18.
19.
In this paper we consider one method of mapping larger units identified from the spatial pattern of sequences of vegetation types. The basic data were presence/absence data for 6450 stands arranged in 90 transects. A second set of data was derived by averaging the species occurrences in non-overlapping groups of 5 stands. A divisive numerical classification was used to determine the primary vegetation units. In all, 5 different sets of primary types were derived, using different species suites, different sample sizes and different numerical methods. We briefly discuss the types identified and their spatial patterns in the area.Each of these types was then used to define a string of type-codes for every transect so that each transect represents a sample from the landscape containing information on the frequency and spatial distribution of the primary vegetation types. The transects may be classified using a Levenshtein dissimilarity measure and agglomerative hierarchical classification, giving 5 analyses of transects, one for each of the primary types discussed above. We then examine these transect classifications to investigate the stability of the vegetation landspace patterns under changes in species used for the primary classification, in size of sample unit and in method of primary classifications. There is a considerable degree of stability in the results. However it seems with this vegetation that the tree species and non-tree species have considerable independence. We also indicate some problems with this approach and some possible extensions.  相似文献   
20.
Scales and costs of habitat selection in heterogeneous landscapes   总被引:4,自引:0,他引:4  
Summary Two scales of habitat selection are likely to influence patterns of animal density in heterogeneous landscapes. At one scale, habitat selection is determined by the differential use of foraging locations within a home range. At a larger scale, habitat selection is determined by dispersal and the ability to relocate the home range. The limits of both scales must be known for accurate assessments of habitat selection and its role in effecting spatial patterns in abundance. Isodars, which specify the relationships between population density in two habitats such that the expected reproductive success of an individual is the same in both, allow us to distinguish the two scales of habitat selection because each scale has different costs. In a two-habitat environment, the cost of rejecting one of the habitats within a home range can be expressed as a devaluation of the other, because, for example, fine-grained foragers must travel through both. At the dispersal scale, the cost of accepting a new home range in a different habitat has the opposite effect of inflating the value of the original habitat to compensate for lost evolutionary potential associated with relocating the home range. These costs produce isodars at the foraging scale with a lower intercept and slope than those at the dispersal scale.Empirical data on deer mice occupying prairie and badland habitats in southern Alberta confirm the ability of isodar analysis to differentiate between foraging and dispersal scales. The data suggest a foraging range of approximately 60 m, and an effective dispersal distance near 140 m. The relatively short dispersal distance implies that recent theories may have over-emphasized the role of habitat selection on local population dynamics. But the exchange of individuals between habitats sharing irregular borders may be substantial. Dispersal distance may thus give a false impression of the inability of habitat selection to help regulate population density.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号