首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6134篇
  免费   252篇
  国内免费   148篇
  2024年   3篇
  2023年   47篇
  2022年   87篇
  2021年   97篇
  2020年   111篇
  2019年   126篇
  2018年   138篇
  2017年   132篇
  2016年   117篇
  2015年   184篇
  2014年   306篇
  2013年   411篇
  2012年   166篇
  2011年   272篇
  2010年   206篇
  2009年   291篇
  2008年   336篇
  2007年   349篇
  2006年   314篇
  2005年   261篇
  2004年   278篇
  2003年   248篇
  2002年   214篇
  2001年   139篇
  2000年   153篇
  1999年   151篇
  1998年   138篇
  1997年   164篇
  1996年   115篇
  1995年   112篇
  1994年   96篇
  1993年   104篇
  1992年   95篇
  1991年   79篇
  1990年   79篇
  1989年   69篇
  1988年   60篇
  1987年   49篇
  1986年   28篇
  1985年   45篇
  1984年   48篇
  1983年   24篇
  1982年   34篇
  1981年   19篇
  1980年   10篇
  1979年   15篇
  1978年   6篇
  1977年   3篇
  1976年   4篇
  1975年   1篇
排序方式: 共有6534条查询结果,搜索用时 234 毫秒
981.
The objective of this study was to enhance the activity of aniline dioxygenase (AtdA), a multi-component Rieske non-heme iron dioxygenase enzyme isolated from Acinetobacter sp. strain YAA, so as to create an enhanced biocatalyst for the bioremediation of aromatic amines. Previously, the mutation V205A was found to widen the substrate specificity of AtdA to accept 2-isopropylaniline (2IPA) for which the wild-type enzyme has no activity (Ang EL, Obbard JP, Zhao HM, FEBS J, 274:928–939, 2007). Using mutant V205A as the parent and applying one round of saturation mutagenesis followed by a round of random mutagenesis, the activity of the final mutant, 3-R21, was increased by 8.9-, 98.0-, and 2.0-fold for aniline, 2,4-dimethylaniline (24DMA), and 2-isopropylaniline (2IPA), respectively, over the mutant V205A. In particular, the activity of the mutant 3-R21 for 24DMA, which is a carcinogenic aromatic amine pollutant, was increased by 3.5-fold over the wild-type AtdA, while the AN activity was restored to the wild-type level, thus yielding a mutant aniline dioxygenase with enhanced activity and capable of hydroxylating a wider range of aromatic amines than the wild type. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
982.
l-Cysteine is an important amino acid in terms of its industrial applications. We previously found marked production of l-cysteine directly from glucose in recombinant Escherichia coli cells by the combination of enhancing biosynthetic activity and weakening the degradation pathway. Further improvements in l-cysteine production are expected to use the amino acid efflux system. Here, we identified a novel gene involved in l-cysteine export using a systematic and comprehensive collection of gene-disrupted E. coli K-12 mutants (the Keio collection). Among the 3,985 nonessential gene mutants, tolC-disrupted cells showed hypersensitivity to l-cysteine relative to wild-type cells. Gene expression analysis revealed that the tolC gene encoding the outer membrane channel is essential for l-cysteine tolerance in E. coli cells. However, l-cysteine tolerance is not mediated by TolC-dependent drug efflux systems such as AcrA and AcrB. It also appears that other outer membrane porins including OmpA and OmpF do not participate in TolC-dependent l-cysteine tolerance. When a low-copy-number plasmid carrying the tolC gene was introduced into E. coli cells with enhanced biosynthesis, weakened degradation, and improved export of l-cysteine, the transformants exhibited more l-cysteine tolerance and production than cells carrying the vector only. We concluded that TolC plays an important role in l-cysteine tolerance probably due to its export ability and that TolC overexpression is effective for l-cysteine production in E. coli. Natthawut Wiriyathanawudhiwong and Iwao Ohtsu contributed equally to this work.  相似文献   
983.
Nitrile groups are catabolized to the corresponding acid and ammonia through one-step reaction involving a nitrilase. Here, we report the use of bioinformatic and biochemical tools to identify and characterize the nitrilase (NitPf5) from Pseudomonas fluorescens Pf-5. The nitPf5 gene was identified via sequence analysis of the whole genome of P. fluorescens Pf-5 and subsequently cloned and overexpressed in Escherichia coli. DNA sequence analysis revealed an open-reading frame of 921 bp, capable of encoding a polypeptide of 307 amino acids residues with a calculated isoelectric point of pH 5.4. The enzyme had an optimal pH and temperature of 7.0°C and 45°C, respectively, with a specific activity of 1.7 and 1.9 μmol min−1 mg protein−1 for succinonitrile and fumaronitrile, respectively. The molecular weight of the nitrilase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography was 33,000 and 138,000 Da, respectively, suggesting that the enzyme is homotetrameric. Among various nitriles, dinitriles were the preferred substrate of NitPf5 with a K m = 17.9 mM and k cat/K m = 0.5 mM−1 s−1 for succinonitrile. Homology modeling and docking studies of dinitrile and mononitrile substrate into the active site of NitPf5 shed light on the substrate specificity of NitPf5. Although nitrilases have been characterized from several other sources, P. fluorescens Pf-5 nitrilase NitPf5 is distinguished from other nitrilases by its high specific activity toward dinitriles, which make P. fluorescens NitPf5 useful for industrial applications, including enzymatic synthesis of various cyanocarboxylic acids.  相似文献   
984.
Here, we characterize a new K+ channel–kinase complex that operates in the metazoan Caenorhabditis elegans to control learning behaviour. This channel is composed of a pore‐forming subunit, dubbed KHT‐1 (73% homology to human Kv3.1), and the accessory subunit MPS‐1, which shows kinase activity. Genetic, biochemical and electrophysiological evidence show that KHT‐1 and MPS‐1 form a complex in vitro and in native mechanosensory PLM neurons, and that KHT‐1 is a substrate for the kinase activity of MPS‐1. Behavioural analysis further shows that the kinase activity of MPS‐1 is specifically required for habituation to repetitive mechanical stimulation. Thus, worms bearing an inactive MPS‐1 variant (D178N) respond normally to touch on the body but do not habituate to repetitive mechanical stimulation such as tapping on the side of the Petri dish. Hence, the phosphorylation status of KHT‐1–MPS‐1 seems to be linked to distinct behavioural responses. In the non‐phosphorylated state the channel is necessary for the normal function of the touch neurons. In the auto‐phosphorylated state the channel acts to induce neuronal adaptation to mechanical stimulation. Taken together, these data establish a new mechanism of dynamic regulation of electrical signalling in the nervous system.  相似文献   
985.
The sunflower seed (Helianthus annuus L.) major peptidase was purified to molecular homogeneity. It is an 80 kDa enzyme with pI of 4.6 and optimal activity at pH 7.5–8.0 and 45–50°C. It is a thiol-dependent aminopeptidase hydrolyzing peptides in a step-by-step manner as cleaving after the N-terminal amino acid residue of the substrate. It requires substrate acyl parts with a free amino group in either α- or β-position and l-configuration of the adjacent carbon atom. The enzyme prefers amino acid residues with bulky hydrophobic side chains at P1-position and its catalytic efficacy is affected by the structure of both P1 and P1′ parts of the substrate.  相似文献   
986.
The recombinant β-carotene 15,15′-monooxygenase from chicken liver was purified as a single 60 kDa band by His-Trap HP and Resource Q chromatography. It had a molecular mass of 240 kDa by gel filtration indicating the native form to be tetramer. The enzyme converted β-carotene under maximal conditions (pH 8.0 and 37°C) with a k cat of 1.65 min−1 and a K m of 26 μM and its conversion yield of β-carotene to retinal was 120% (mol mol−1). The enzyme displayed catalytic efficiency and conversion yield for β-carotene, β-cryptoxanthin, β-apo-8′-carotenal, β-apo-4′-carotenal, α-carotene and γ-carotene in decreasing order but not for zeaxanthin, lutein, β-apo-12′-carotenal and lycopene, suggesting that the presence of one unsubstituted β-ionone ring in a substrate with a molecular weight greater than C30 seems to be essential for enzyme activity.  相似文献   
987.
In creatine kinases (CKs), the amino acid residue-96 is a strictly conserved arginine. This residue is not directly associated with substrate binding, but it is located close to the binding site of the substrate creatine. On the other hand, the residue-96 is known to be involved in expression in the substrate specificity of various other phosphagen (guanidino) kinases, since each enzyme has a specific residue at this position: arginine kinase (Tyr), glycocyamine kinase (Ile), taurocyamine kinase (His) and lombricine kinase (Lys). To gain a greater understanding of the role of residue-96 in CKs, we replaced this residue in zebra fish Danio rerio cytoplasmic CK with other 19 amino acids, and expressed these constructs in Escherichia coli. All the twenty recombinant enzymes, including the wild-type, were obtained as soluble form, and their activities were determined in the forward direction. Compared with the activity of wild-type, the R96K mutant showed significant activity (8.3% to the wild-type), but 10 mutants (R96Y, A, S, E, H, T, F, C, V and N) showed a weak activity (0.056–1.0%). In the remaining mutants (R96Q, G, M, P, L, W, D and I), the activity was less than 0.05%. Our mutagenesis studies indicated that Arg-96 in Danio CK can be substituted for partially by Lys, but other replacements caused remarkable loss of activity. From careful inspection of the crystal structures (transition state analog complex (TSAC) and open state) of Torpedo cytoplasmic CK, we found that the side chain of R96 forms hydrogen bonds with A339 and D340 only in the TSAC structure. Based on the assumption that CKs consist of four dynamic domains (domains 1–3, and fixed domain), the above hydrogen bonds act to link putative domains 1 and 3 in TSAC structure. We suggest that residue-96 in CK and equivalent residues in other phosphagen kinases, which are structurally similar, have dual roles: (1) one involves in distinguishing guanidino substrates, and (2) the other plays a key role in organizing the hydrogen-bond network around residue-96 which offers an appropriate active center for the high catalytic turnover. The mode of development of the network appears to be unique each phosphagen kinase, reflecting evolution of each enzyme.  相似文献   
988.
M2 transmembrane domain channel (M2‐TMD) permeation properties are studied using molecular dynamics simulations of M2‐TMD (1NYJ) embedded in a lipid bilayer (DMPC) with 1 mol/kg NaCl or KCl saline solution. This study allows examination of spontaneous cation and anion entry into the selectivity filter. Three titration states of the M2‐TMD tetramer are modeled for which the four His37 residues, forming the selectivity filter, are net uncharged, +2 charged, or +3 charged. M2‐TMD structural properties from our simulations are compared with the properties of other models extracted from NMR and X‐ray studies. During 10 ns simulations, chloride ions occasionally occupy the positively‐charged selectivity filter region, and from umbrella sampling simulations, Cl? has a lower free‐energy barrier in the selectivity‐filter region than either Na+ or NH, and NH has a lower free‐energy barrier than Na+. For Na+ and Cl?, the free‐energy barriers are less than 5 kcal/mol, suggesting that the 1NYJ conformation would probably not be exquisitely proton selective. We also point out a rotameric configuration of Trp41 that could fully occlude the channel. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
989.
Biological legacies soften pine plantation effects for bryophytes   总被引:1,自引:0,他引:1  
Biological legacies are organic structures and patterns remaining after a disturbance that may contribute to the complexity of the recovering vegetation. Legacies may, in turn, reduce the impacts of human disturbances such as logging and habitat transformation on elements of biodiversity. To examine the effects of biological legacies on biotic responses after disturbance, we surveyed 32 sites for bryophytes in an area subject to large-scale conversion of native eucalypt forest to exotic Pinus radiata D. Don plantations in eastern Australia. We sampled bryophyte and substrate diversity (log, bare ground, upturned tree/log, and trees) in eight sites in each of four landscape context classes: pine plantation stands, elliptical-shaped remnants, strip-shaped remnants, and controls in a large area of contiguous, unmanaged eucalypt forest. We found a muted response by individual species of bryophyte to landscape context. We attribute this, in part, to the presence of logs in the intensively managed pine plantation sites. The boost in bryophyte diversity from species on logs meant that some pine sites supported similar species composition to the continuous eucalypt forest controls. Our findings also underline the importance of local controls and structural variation, including leaving logs and native trees in plantations, for enhancing bryophyte species richness in managed landscapes.  相似文献   
990.
Potassium ions (K+) are required for plant growth and development, including cell division and cell elongation/expansion, which are mediated by the K+ transport system. In this study, we investigated the role of K+ in cell division using tobacco BY-2 protoplast cultures. Gene expression analysis revealed induction of the Shaker -like outward K+ channel gene, NTORK1 , under cell-division conditions, whereas the inward K+ channel genes NKT1 and NtKC1 were induced under both cell-elongation and cell-division conditions. Repression of NTORK1 gene expression by expression of its antisense construct repressed cell division but accelerated cell elongation even under conditions promoting cell division. A decrease in the K+ content of cells and cellular osmotic pressure in dividing cells suggested that an increase in cell osmotic pressure by K+ uptake is not required for cell division. In contrast, K+ depletion, which reduced cell-division activity, decreased cytoplasmic pH as monitored using a fluorescent pH indicator, SNARF-1. Application of K+ or the cytoplasmic alkalizing reagent (NH4)2SO4 increased cytoplasmic pH and suppressed the reduction in cell-division activity. These results suggest that the K+ taken up into cells is used to regulate cytoplasmic pH during cell division.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号