首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6143篇
  免费   252篇
  国内免费   148篇
  2024年   3篇
  2023年   53篇
  2022年   90篇
  2021年   97篇
  2020年   111篇
  2019年   126篇
  2018年   138篇
  2017年   132篇
  2016年   117篇
  2015年   184篇
  2014年   306篇
  2013年   411篇
  2012年   166篇
  2011年   272篇
  2010年   206篇
  2009年   291篇
  2008年   336篇
  2007年   349篇
  2006年   314篇
  2005年   261篇
  2004年   278篇
  2003年   248篇
  2002年   214篇
  2001年   139篇
  2000年   153篇
  1999年   151篇
  1998年   138篇
  1997年   164篇
  1996年   115篇
  1995年   112篇
  1994年   96篇
  1993年   104篇
  1992年   95篇
  1991年   79篇
  1990年   79篇
  1989年   69篇
  1988年   60篇
  1987年   49篇
  1986年   28篇
  1985年   45篇
  1984年   48篇
  1983年   24篇
  1982年   34篇
  1981年   19篇
  1980年   10篇
  1979年   15篇
  1978年   6篇
  1977年   3篇
  1976年   4篇
  1975年   1篇
排序方式: 共有6543条查询结果,搜索用时 31 毫秒
31.
We have used the chemically synthesized sequence of pre-pro-parathyroid hormone and several of its analogues to test the notion that the capacity of amphipathic peptides to aggregate in membranes and form ion-permeable channels correlates with their ability to function as signal sequences for secreted proteins. We found that pre-pro-parathyroid hormone (the signal sequence and pro-region of parathyroid hormone (M)), as well as some of its analogues, forms aggregates of monomers which are ion-permeable. The ion-permeable aggregates (2–3 monomers) formed by (M) are voltage-dependent and are more permeable for cations than for anions. The compounds which formed ion channels in bilayers also acted as potential signal sequences. We conclude that the ability of peptides to form ion-permeable pathways in bilayers may be correlated to their ability to function as signal peptides.  相似文献   
32.
The effects of maitotoxin (MTX) on endogenous amino acid release were tested on highly purified striatal neurons differentiated in primary culture. MTX induced a large and concentration-dependent release of gamma-aminobutyric acid (GABA). This effect was abolished when experiments were performed in the absence of external Ca2+, and restored when Ca2+ ions were added after removing the MTX-containing Ca2+-free solution. MTX-induced amino acid release was not affected by 1 microM nifedipine and only slightly inhibited by 1 mM Co2+. MTX also induced a massive accumulation of 45Ca2+ in the neurons which, in contrast to the MTX-evoked GABA release, was totally blocked in the presence of 1 mM Co2+. Whereas 500 nM tetrodotoxin was without significant effect, MTX-evoked GABA release was dependent on the presence of external Na+ and sensitive to nipecotic acid, a GABA uptake inhibitor. It is concluded that, on striatal neurons, MTX induced Na+ influx only in the presence of external Ca2+. The increase in cytoplasmic Na+ ions then triggers the release of GABA.  相似文献   
33.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. In the giant-celled green algaChara corallina, K+ currents in the plasmalemma were measured during the action potential and when the cell was depolarized to the K+ equilibrium potential in high external K+ concentrations. Currents in both conditions were reduced by externally added tetraethylammonium (TEA+), Ba2+, Na+ and Cs+. In contrast to inhibition by TEA+, the latter three ions inhibited inward K+ current in a voltage-dependent manner, and reduced inward current more than outward. Ba2+ and Na+ also appeared to inhibit outward current in a strongly voltage-dependent manner. The blockade by Cs+ is studied in more detail in the following paper. TEA+ inhibited both inward and outward currents in a largely voltage-independent manner, with an apparentK D of about 0.7 to 1.1mm, increasing with increasing external K+. All inhibitors reduced current towards a similar linear leak, suggesting an insensitivity of the background leak inChara to these various K+ channel inhibitors. The selectivity of the channel to various monovalent cations varied depending on the method of measurement, suggesting that ion movement through the K+-selective channel may not be independent.  相似文献   
34.
Summary The patch-clamp technique in whole-cell configuration was used to study the electrical properties of the tonoplast in isolated vacuoles fromAcer pseudoplatanus cultured cells. In symmetrical KCl or K2 malate solutions, voltage- and time-dependent inward currents were elicited by hyperpolarizing the tonoplast (inside negative), while in the positive range of potential the conductance was very small. The specific conductance of the tonoplast at –100 mV, in 100mm symmetrical KCl was about 160 S/cm2. The reversal potentials (E rev) of the current, measured in symmetrical or asymmetrical ion concentrations (cation, anion or both) were very close to the values of the K+ equilibrium potential. Experiments performed in symmetrical or asymmetrical NaCl indicate that Na+ too can flow through the channels. NeitherE rev nor amplitude and kinetics of the current changed by replacing NaCl with KCl in the external solution. These results indicate the presence of hyperpolarization-activated channels in tonoplasts, which are permeable to K+ as well as to Na+. Anions such as Cl or malate seem to contribute little to the channel current.  相似文献   
35.
I. U. Flügge  K. C. Woo  H. W. Heldt 《Planta》1988,174(4):534-541
The transport of glutamate, 2-oxoglutarate and malate in intact spinach chloroplasts was determined using a double-silicone-layer centrifugation technique in which the silicone layers stayed separated at the end of centrifugation. Glutamate was found to be transported via the dicarboxylate but not the 2-oxoglutarate translocator. Hence the kinetic parameters (i.e.K m,K i andV max) determined in glutamate-preloaded chloroplasts represent the kinetic constants of the dicarboxylate translocator. Measurements from malate- or succinate-preloaded chloroplasts represent the aggregate values of both the dicarboxylate and the 2-oxoglutarate translocators. Calculations showed that the 2-oxoglutarate and glutamate transport required to support the high fluxes of photorespiratory NH3 recycling could be achieved if the transport of these two dicarboxylates occurred on separate translocators. It is proposed that during photorespiration the transport of 2-oxoglutarate into and glutamate out of the chloroplast occurred via the 2-oxoglutarate and the dicarboxylate translocators, respectively. These transports are coupled to malate counter-exchange in a cascade-like manner resulting in a net 2-oxoglutarate/glutamate exchange with no net malate uptake.Abbreviation 2-OG 2-oxoglutarate  相似文献   
36.
37.
Abstract Lipid bilayer experiments were performed with chromosome-encoded haemolysin of Escherichia coli . The addition of the toxin to the aqueous phase bathing lipid bilayer membranes of asolectin resulted in the formation of transient ion-permeable channels with two states at small transmembrane voltages. One is prestate (single-channel conductance 40 pS in 0.15 M KCl) of the open state, which had a single-channel conductance of 420 pS in 0.15 M KCl and a mean lifetime of 30 s. Membranes formed of pure lipids were rather inactive targets for this haemolysin. Experiments with different salts suggested that the haemolysin channel was highly cation-selective at neutral pH. The mobility sequence of the cations in the channel was similar if not identical to their mobility sequence in the aqueous phase. The single-channel data were consistent with a wide, water-filled channel with an estimated minimal diameter of about 1 nm. The pore-forming properties of chromosome-encoded haemolysin were compared with those of plasmid-encoded haemolysin. Both toxins share common features, oligomerize probably to form pores in lipid bilayer membranes. Both types of haemolysin channels have similar properties but different lifetimes.  相似文献   
38.
1. Two mutants of the sodium channel II have been expressed inXenopus oocytes and have been investigated using the patch-clamp technique. In mutant E387Q the glutamic acid at position 387 has been replaced by glutamine, and in mutant D384N the aspartic acid at position 384 has been replaced by asparagine.2. Mutant E387Q, previously shown to be resistant to block by tetrodotoxin (Noda et al. 1989), has a single-channel conductance of 4 pS, that can be easily measured only using noise analysis. At variance with the wild-type, the openchannel current-voltage relationship of mutant E387Q is linear over a wide voltage range even under asymmetrical ionic conditions.3. Mutant D384N has a very low permeability for any of the following ions: Cl, Na+, K+, Li+, Rb+, Ca2+, Mg2+, NH4 + , TMA+, TEA+. However, asymmetric charge movements similar to the gating currents of the Na+-selective wild-type are still observed.4. These results suggest that residues E387 and D384 interact directly with the pathway of the ions permeating the open channel.Abbreviations TTX tetrodotoxin; Na+, sodium; K+, potassium; - NFR normal frog Ringer - HEPES N-2-hydroxylethyl piperazine-N-2-ethanesulfonic acid - EGTA ethyleneglycol-bis(-amino-ethyl ether) N,N,N',N'-tetra acetic acid - TEA tetraethylammonium - TMA tetramethylammonium;I g , gating current; , single-channel conductance  相似文献   
39.
The inside-out mode of the patch-clamp technique was used to study adenosine-5-triphosphate (ATP)-sensitive K+ channels in mammalian skeletal muscle. Vanadate, applied to the cytoplasmic face of excised patches, was a potent activator of ATP-sensitive K+ channels. Divalent cations (Mg2+, Ca2+) were a prerequisite for the activating process. The maximal effect was achieved using 1 mM vanadate dissolved in Ringer, increasing the open-state probability about ninefold. The active 5 + redox form of vanadate which stimulates ATP-sensitive K+ channels is likely to be decavanadate V10O inf28 sup6– . ATP concentration-response curves have Hill coefficients near three in internal Na+-rich Ringer and between one and two in internal KCl solutions. Half maximal channel blockage was observed at ATP concentrations of 4 and 8 M in Ringer and KCl solutions, respectively. Internal vanadate shifted the curves towards higher ATP concentrations without affecting their slopes. Thus 50% channel blockage occurred at 65 M ATP in internal Ringer containing 0.5 mM vanadate. The results indicate that the affinity and stoichiometry of ATP binding to ATP-sensitive K+ channels are strongly modulated by internal cations and that the ATP sensitivity is weakened by vanadate. Offprint requests to: B. Neumcke  相似文献   
40.
The effect of phloretin (20-100 M), a dipolar organic compound, on the voltage clamp currents of the frog node of Ranvier has been investigated. The Na currents are simply reduced in size but not otherwise affected. Phloretin has no effect on the slow 4-aminopyridine-resistant K channels. However, the voltage dependence and time course of the fast K conductance (g K) is markedly altered. The g K(E) curve, determined by measuring fast tail currents at different pulse potentials, normally exhibits a bend at –50 mV indicating the existence of two types of fats K channels. Phloretin shifts the g K (E) curve to more positive potentials, reduces its slope and its maximum and abolishes the distinction between the two tpyes of fast K channels. The effect becomes more pronounced with time. Phloretin also markedly slows the opening of the fast K channels, but has much less effect on the closing. Opening can be accelerated again by a long depolarizing prepulse which presumably removes part of the phloretin block. It is concluded that phloretin selectively affects the fast K channels of the nodal membrane. The results are compared with similar observations on the squid giant axon. Offprint requests to: H. Meves  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号