首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6123篇
  免费   253篇
  国内免费   147篇
  2024年   3篇
  2023年   47篇
  2022年   76篇
  2021年   97篇
  2020年   111篇
  2019年   126篇
  2018年   138篇
  2017年   132篇
  2016年   117篇
  2015年   184篇
  2014年   306篇
  2013年   411篇
  2012年   166篇
  2011年   272篇
  2010年   206篇
  2009年   291篇
  2008年   336篇
  2007年   349篇
  2006年   314篇
  2005年   261篇
  2004年   278篇
  2003年   248篇
  2002年   214篇
  2001年   139篇
  2000年   153篇
  1999年   151篇
  1998年   138篇
  1997年   164篇
  1996年   115篇
  1995年   112篇
  1994年   96篇
  1993年   104篇
  1992年   95篇
  1991年   79篇
  1990年   79篇
  1989年   69篇
  1988年   60篇
  1987年   49篇
  1986年   28篇
  1985年   45篇
  1984年   48篇
  1983年   24篇
  1982年   34篇
  1981年   19篇
  1980年   10篇
  1979年   15篇
  1978年   6篇
  1977年   3篇
  1976年   4篇
  1975年   1篇
排序方式: 共有6523条查询结果,搜索用时 15 毫秒
21.
Most current models of membrane ion channel gating are abstract compartmental models consisting of many undefined states connected by rate constants arbitrarily assigned to fit the known kinetics. In this paper is described a model with states that are defined in terms of physically plausible real systems which is capable of describing accurately most of the static and dynamic properties measured for the sodium channel of the squid axon. The model has two components. The Q-system consists of charges and dipoles that can move in response to an electric field applied across the membrane. It would contain and may compose the gating charge that is known to transfer prior to channel opening. The N-system consists of a charged group or dipole that is constrained to move only in the plane of the membrane and thus does not interact directly with the trans-membrane electric field but can interact electrostatically with the Q-system. The N-system has only two states, its resting state (channel closed) and its excited state (channel open) and its response time is very short in comparison with that of the Q-system. On depolarizing the membrane the the N-system will not make a transition to its open state until a critical amount of Q-charge transfer has occurred. Using only four adjustable parameters that are fully determined by fitting the equilibrium properties of the model to those of the sodium channel in the squid axon, the model is then able to describe with some accuracy the kinetics of channel opening and closing and includes the Cole and Moore delay. In addition to these predictions of the behaviour of assemblies of channels the model predicts some of the individual channel properties measured by patch clamp techniques.  相似文献   
22.
Toxic peptides II-9.2.2 and II-10, purified from Centruroides noxius venom, bear highly homologous N-terminal amino acid sequences, and both toxins are lethal to mice. However, only toxin II-10 is active on the voltage-clamped squid axon, selectively decreasing the voltage-dependent Na+ current. Here, we have tested toxins II-9 and II-10 on synaptosomes from mouse brain: both toxins increased the release of gamma-[3H]aminobutyric acid ([3H]GABA). Their effect was completely blocked by tetrodotoxin or by the absence of external Na+. Also, both toxins increased Na+ permeability in isolated nerve terminals. Besides the observation that toxin II-9 is active on synaptosomes, the effect of toxin II-10 in this preparation is opposite to that observed in the squid axon. Thus, our results reflect functional differences between the populations of Na+ channels in mouse brain synaptosomes and in the squid axon. The release of GABA evoked by these toxins from synaptosomes required external Ca2+ and was blocked by Ca2+ channel blockers (verapamil and Co2+). This latter observation is in sharp contrast to the releasing action of veratrine, which evoked release even in the absence of external Ca2+. Furthermore, the action of both C. noxius toxins was potentiated by veratrine, a result suggesting they have different mechanisms of action. Among drugs that release neurotransmitters by increasing Na+ permeability, it is noteworthy that scorpion toxins are the only ones yet reported to have a strict requirement for external Ca2+.  相似文献   
23.
Summary An electrical fusion method has been used to form somatic hybrids between protoplasts of two mutant cell lines of sycamore tissue culture cells. Both mutants will not grow in a hypoxanthine-aminopterin-thymidine (HAT) medium. It was possible to select the fused hybrids from homospecific fusion products and nonfused protoplasts by the use of HAT medium. In this way the viability and regeneration of the fused cells during the first few weeks of culture could be evaluated. An electron microscopic examination of the fusion process showed that it occurred at a series of points along the surface of the plasmalemma. Cytoplasmic bridges between the two cells were formed separated by vesicles which later dispersed to give complete cytoplasmic continuity between the cells.  相似文献   
24.
Summary The presence of a Ca2+ channel in the plasmalemma of tonoplast-freeNitellopsis obtusa cells was demonstrated and its characteristics were studied using current- and voltage-clamp techniques. A long-lasting inward membrane current (I m ), recorded using a step voltage clamp, consisted of a single component without time-dependent inactivation. Increasing either [Ca2+] o or [Cl] o 1) enhanced the maximum amplitude of inwardI m ((I m ) p ) and 2) shifted the peak voltage ((V m ) p ) at(I m ) p to more positive values under ramp-shaped voltage clamping and 3) depolarized the peak value of action potentials. This behavior is consistent with predictions based on the Nernst equation for Ca2+ but not for Cl. DIDS (4,4-diisothiocyano-2,2-disulfonic acid stilbene) did not suppress(I m ) p in tonoplast-free cells, in contrast with its effect on normal cells. La3+ and nifedipine blocked(I m ) p irreversibly. On the other hand, Ca2+ channel agonist, BAY K 8644 irreversibly enhanced(I m ) p . Both Sr2+ influx and K+ efflux increased upon excitation. The charge carried by Sr2+ influx was compensated for by K+ efflux. It is concluded that only the Ca2+ channel is activated during plasmalemma excitation in tonoplast-free cells. In terms of the magnitude of(I m ) p , Sr2+ could replace Ca2+, but Mn2+, Mg2+ and Ba2+ could not. External pH affected(I m ) p and the membrane conductance (g m ) at(I m ) p ((g m ) p ). Increasing the external ionic strength caused increases in both(I m ) p and(g m ) p , and shifted(V m ) p to positive values. At the same time, Sr2+ influx increased. Thus Ca2+ channel activation seems to be enhanced by increasing external ionic strength. The possible involvement of surface potential is discussed.  相似文献   
25.
Summary The mitochondrial outer membrane contains voltagegated channels called VDAC that are responsible for the flux of metabolic substrates and metal ions across this membrane. The addition of micromolar quantities of aluminum chloride to phospholipid membranes containing VDAC channels greatly inhibits the voltage dependence of the channels' permeability. The channels remain in their high conducting (open) state even at high membrane potentials. An analysis of the change in the voltage-dependence parameters revealed that the steepness of the voltage dependence decreased while the voltage needed to close half the channels increased. The energy difference between the open and closed states in the absence of an applied potential did not change. Therefore, the results are consistent with aluminum neutralizing the voltage sensor of the channel. pH shift experiments showed that positively charged aluminum species in solution were not involved. The active form was identified as being either (or both) the aluminum hydroxide or the tetrahydroxoaluminate form. Both of these could reasonably be expected to neutralize a positively charged voltage sensor. Aluminum had no detectable effect of either single-channel conductance or selectivity, indicating that the sensor is probably not located in the channel proper and is distinct from the selectivity filter.  相似文献   
26.
Summary K+ channels in inside-out patches from hamster insulin tumor (HIT) cells were studied using the patch-clamp technique. HIT cells provide a convenient system for the study of ion channels and insulin secretion. They are easy to culture, form gigaohm seals readily and secrete insulin in response to glucose. The properties of the cells changed with the passage number. For cell passage numbers 48 to 56, five different K+-selective channels ranging from 15 to 211 pS in symmetrical 140mm KCl solutions were distinguished. The channels were characterized by the following features: a channel with a conductance (in symmetrical 140mm KCl solutions) of 210 pS that was activated by noncyclic purine nucleotides and closed by H+ ions (pH=6.8); a 211 pS channel that was Ca2+-activated and voltage dependent; a 185 pS channel that was blocked by TEA but was insensitive to quinine or nucleotides; a 130 pS channel that was activated by membrane hyperpolarization; and a small conductance (15 pS) channel that was not obviously affected by any manipulation. As determined by radioimmunoassay, cells from passage number 56 secreted 917±128 ng/mg cell protein/48 hr of insulin. In contrast, cells from passage number 77 revealed either no channel activity or an occasional nonselective channel, and secreted only 29.4±8.5 ng/mg cell protein/48 hr of insulin. The nonselective channel found in the passage 77 cells had a conductance of 25 pS in symmetrical 140mm KCl solutions. Thus, there appears to be a correlation between the presence of functional K+ channels and insulin secretion.  相似文献   
27.
The nitrendipine receptor associated with the voltage-dependent calcium channel in rat brain was solubilized by detergent extraction and sonication. The detergent solution used for extraction consisted of 10 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 0.25% (wt/vol) polyoxyethylene 20 cetyl ether (Brij 58), and 0.025% (wt/vol) polyoxyethylene 17 cetyl stearyl ether (Lubrol WX) in the presence of 30% (wt/vol) glycerol as a stabilizer. The molecular weight of the receptor was estimated to be 1,800K by Sephacryl S-500 gel filtration and 800K by sucrose density gradient sedimentation. The equilibrium dissociation constant of [3H]nitrendipine to the solubilized receptors was 5.6 nM, which is approximately 10 times that of the membrane-bound receptor. The binding of nitrendipine to the receptor was inhibited noncompetitively by the structurally unrelated calcium channel inhibitors verapamil and prenylamine; their concentrations for 50% inhibition were both 1.0 X 10(-7) M, and they caused maximal inhibitions of 70 and 100%, respectively.  相似文献   
28.
The time constant of the process producing the delay in Na inactivation development as determined by the two pulse method (delay) was extracted and compared to that of the slowest Na activation process 3 for the I Na during the conditioning pulse of that same determination. delay and two pulse inactivation c values were computer generated using a nonlinear least squares algorithm. h and single pulse inactivation h values were independently generated for each determination also with the aid of the computer using the same non-linear least squares algorithm. In one determination at 2 mV, c was 4.68 and delay 0.494 ms while h was 4.70 and 3 0.491 ms for a c/h of 0.996 and a delay/3 of 1.006. Mean delay/3 from five determinations in four axons, both Cs and K perfused, and spanning a potential range of-27 to 2mV was 1.068. The precursor process to inactivation is channel opening. Some fraction of channels presumably inactivate via another route where prior channel opening is not required.  相似文献   
29.
The effects of the calcium channel blockers, verapamil, diltiazem and lanthanum ions and the Ca2+ dependency on motility as well as the photophobic response (stop-response) of Gyrodinium dorsum were studied. At Ca2+ concentrations below 10-3 M, motility was inhibited. La3+ inhibits the stop-response, in contrast to verapamil and diltiazem. The only calcium channel blocker that increased the amount of non-motile cells was verapamil. The results indicate that motility are Ca2+ dependent and that the stop-responses of G. dorsum could be affected by extracellular Ca2+. Effects of the photosythesis inhibitor (DCMU) on the stop-response was also determined. With background light of different wavelength (614, 658 and 686 nm) the stop-response increased. DCMU inhibited this effect of background light. Negative results with the monoclonal antibody Pea-25 directed to phytochrome and the results with DCMU, indicate that the stop-response of G. dorsum is coupled to photosynthesis rather than to a phytochrome-like pigment. Oxygen evolution, but not cell movement, was completely inhibited by 10-6 M DCMU.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-methylurea - DILT diltiazem - DMSO dimethylsulfoxide - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - VER verapamil  相似文献   
30.
1. A methyl-4-azidobenzimidyl (MAB) derivative of the alpha-scorpion toxin from Leiurus quinquestriatus (LqTx) specifically labels only the alpha subunit of the rat brain sodium channel in synaptosomes or in purified and reconstituted sodium-channel preparations. 2. Unlike previous photoreactive toxin derivaties, binding and photolabeling by MAB-LqTx are allosterically modulated by tetrodotoxin and batrachotoxin, as observed for native LqTx binding to sodium channels in synaptosomes. 3. Proteolytic cleavage of the alpha subunit photolabeled with MAB-LqTx shows that the label is located within a 60 to 70-kDa protease-resistant core structure in domain I of the sodium-channel alpha subunit. 4. MAB-LqTx will be valuable in further defining the structure-activity relationships at the alpha-scorpion toxin receptor site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号