首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   19篇
  国内免费   9篇
  303篇
  2024年   2篇
  2023年   4篇
  2022年   11篇
  2021年   6篇
  2020年   10篇
  2019年   5篇
  2018年   8篇
  2017年   5篇
  2016年   9篇
  2015年   6篇
  2014年   21篇
  2013年   21篇
  2012年   11篇
  2011年   8篇
  2010年   10篇
  2009年   16篇
  2008年   21篇
  2007年   15篇
  2006年   14篇
  2005年   8篇
  2004年   15篇
  2003年   11篇
  2002年   12篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   3篇
  1978年   1篇
  1976年   1篇
排序方式: 共有303条查询结果,搜索用时 15 毫秒
31.
Niemann–Pick C1-Like 1 (NPC1L1) is a polytopic transmembrane protein responsible for dietary cholesterol and biliary cholesterol absorption. Consistent with its functions, NPC1L1 distributes on the brush border membrane of enterocytes and the canalicular membrane of hepatocytes in humans. As the molecular target of ezetimibe, a hypocholesterolemic drug, its physiological and pathological significance has been recognized and intensively studied for years. Recently, plenty of new findings reveal the molecular mechanism of NPC1L1's role in cholesterol uptake, which may provide new insights on our understanding of cholesterol absorption. In this review, we summarized recent progress in these studies and proposed a working model, hoping to provide new perspectives on the regulation of cholesterol transport and metabolism.  相似文献   
32.
GTPases of the Rab5 and Rab7 families were shown to control vacuolar sorting but their specific subcellular localization is controversial in plants. Here, we show that both the canonical as well as the plant-specific Rab5 reside at the newly discovered 'late prevacuolar compartment' (LPVC) while Rab7 partitions to the vacuolar membrane when expressed at low levels. Higher expression levels of wild-type Rab5 GTPases but not Rab7 lead to dose-dependent inhibition of biosynthetic vacuolar transport. In the case of Ara6, this included aberrant co-localization with markers for earlier post-Golgi compartments including the trans-Golgi network. However, nucleotide-free mutants of all three GTPases (Rha1, Ara6 and Rab7) cause stronger dose-dependent inhibition of vacuolar sorting. In addition, nucleotide-free Rha1 led to a later maturation defect and co-localization of markers for the prevacuolar compartment (PVC) and the LPVC. The corresponding Rab7 mutant strongly inhibited vacuolar delivery without merging of PVC and LPVC markers. Evidence for functional differentiation of the Rab5 family members is underlined by the fact that mutant Rha1 expression can be suppressed by increasing wild-type Rha1 levels while mutant Ara6 specifically titrates the nucleotide exchange factor Vps9. A model describing the sequential action of Rab5 and Rab7 GTPases is presented in the light of the current observations.  相似文献   
33.
Nepmucin/CLM-9 is an Ig domain-containing sialomucin expressed in vascular endothelial cells. Here we show that, like CD31, nepmucin was localized to interendothelial contacts and to vesicle-like structures along the cell border and underwent intracellular recycling. Functional analyses showed that nepmucin mediated homotypic and heterotypic cell adhesion via its Ig domain. Nepmucin-expressing endothelial cells showed enhanced lymphocyte transendothelial migration (TEM), which was abrogated by anti-nepmucin mAbs that block either homophilic or heterophilic binding. Notably, the mAbs that inhibited homophilic binding blocked TEM without affecting lymphocyte adhesion. These results suggest that endothelial nepmucin promotes lymphocyte TEM using multiple adhesion pathways.  相似文献   
34.
The 31P nuclear magnetic resonance (NMR) characteristics, toxicity, and cellular penetration of five linear or cyclic α-aminophosphonate highly sensitive pH probes were investigated in Dictyostelium discoideum cells and isolated rat hearts and were compared with three phosphonic acid derivatives. The line width broadening at pH pKa, which was satisfactorily modelized for all compounds, was significantly limited in biological milieu for the new markers, affording a four- to sixfold better accuracy in pH determination. Cellular uptake or washout of nontoxic concentrations (<15 mM) of α-aminophosphonates occurred by rapid passive permeation, whereas standard probes required a much slower fluid-phase pinocytosis and transport processes that could ultimately lead to trapping. Using mild concentrations (<4 mM) three α-aminophosphonates having 6 < pKa < 7 allowed an easy and simultaneous 31P NMR determination of cytosolic, acidic, and extracellular compartments in anoxic–reoxygenated or starving D. discoideum.  相似文献   
35.
36.
异胡豆苷合成酶(strictosidine synthase,STR)是吲哚生物碱生物合成的一种关键酶,将色胺(tryptamine)和裂环马钱子(secologanin)耦合成为吲哚生物碱的前体化合物异胡豆苷.将异胡豆苷合成酶标定在烟草植物不同的亚细胞区室--叶绿体、液泡和内质网中表达,通过蛋白免疫印迹分析和STR酶活性的测定,表明STR在叶绿体、液泡和内质网中有效表达.STR体外酶活性分析采用间接荧光法检测色胺在反应体系的消耗.STR的酶活性分析表明了STR在烟草中不同的亚细胞区室得以活性表达.分离纯化转基因烟草的叶绿体,通过对其分离的不同部分的蛋白免疫印迹分析,确定了将STR正确标定在烟草的叶绿体中表达.  相似文献   
37.
A novel membrane protein, Yml067c in the systematic ORF name, was discovered as a component of immunoisolated vesicles of the early Golgi compartment of the yeast Saccharomyces cerevisiae (Cho et al., FEBS Lett. 469, 151-154 (2000)). Conserved sequences having sequence similarity to Yml067c were widely distributed in the eukaryotes and one of them, Yal042w, was found in the Saccharomyces genome database. In the yeast cell, Yml067c and Yal042w were found to form a heterooligomeric complex by immunoprecipitation of their tagged derivatives from the detergent-solubilized membrane. Cell fractionation and indirect immunofluorescent staining indicated that the majority of these proteins were localized on the ER membrane. Therfore, the Yml067c-Yal042w complex should shuttle between the ER and the early Golgi compartment as well as the p24-family proteins.  相似文献   
38.
39.
While nematodes are sometimes regarded as osmoconformers, at least one species is capable of short-term osmoregulation over a wide range of osmotic environments, and the principal site of osmoregulation is the body wall. This general osmoregulation is important to the life of the nematode not only in confronting variations in the environment, but also in maintaining its hydrostatic skeleton. There is also evidence suggesting that compartments exist in some nematodes and that water exchange between the compartments is limited and slow. The ability to regulate the internal movements of water is important in molting and in the infective process. Hormones may be the mediators of osmotic control.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号