首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3956篇
  免费   86篇
  国内免费   102篇
  4144篇
  2024年   10篇
  2023年   22篇
  2022年   36篇
  2021年   42篇
  2020年   43篇
  2019年   57篇
  2018年   45篇
  2017年   61篇
  2016年   81篇
  2015年   136篇
  2014年   413篇
  2013年   390篇
  2012年   421篇
  2011年   641篇
  2010年   455篇
  2009年   127篇
  2008年   103篇
  2007年   106篇
  2006年   112篇
  2005年   89篇
  2004年   101篇
  2003年   79篇
  2002年   58篇
  2001年   32篇
  2000年   28篇
  1999年   47篇
  1998年   22篇
  1997年   34篇
  1996年   47篇
  1995年   20篇
  1994年   24篇
  1993年   26篇
  1992年   25篇
  1991年   18篇
  1990年   21篇
  1989年   14篇
  1988年   15篇
  1987年   13篇
  1986年   13篇
  1985年   14篇
  1984年   7篇
  1983年   7篇
  1980年   8篇
  1977年   8篇
  1976年   7篇
  1975年   8篇
  1973年   7篇
  1972年   9篇
  1971年   6篇
  1970年   6篇
排序方式: 共有4144条查询结果,搜索用时 21 毫秒
61.
The understanding of how primordial proteins emerged has been a fundamental and longstanding issue in biology and biochemistry. For a better understanding of primordial protein evolution, we synthesized an artificial protein on the basis of an evolutionary hypothesis, segment-based elongation starting from an autonomously foldable short peptide. A 10-residue protein, chignolin, the smallest foldable polypeptide ever reported, was used as a structural support to facilitate higher structural organization and gain-of-function in the development of an artificial protein. Repetitive cycles of segment elongation and subsequent phage display selection successfully produced a 25-residue protein, termed AF.2A1, with nanomolar affinity against the Fc region of immunoglobulin G. AF.2A1 shows exquisite molecular recognition ability such that it can distinguish conformational differences of the same molecule. The structure determined by NMR measurements demonstrated that AF.2A1 forms a globular protein-like conformation with the chignolin-derived β-hairpin and a tryptophan-mediated hydrophobic core. Using sequence analysis and a mutation study, we discovered that the structural organization and gain-of-function emerged from the vicinity of the chignolin segment, revealing that the structural support served as the core in both structural and functional development. Here, we propose an evolutionary model for primordial proteins in which a foldable segment serves as the evolving core to facilitate structural and functional evolution. This study provides insights into primordial protein evolution and also presents a novel methodology for designing small sized proteins useful for industrial and pharmaceutical applications.  相似文献   
62.
α-Crystallin is a multimeric lenticular protein that has recently been shown to be expressed in several non-lenticular tissues as well. It is shown to prevent aggregation of non-native proteins as a molecular chaperone. By using a non-thermal aggregation model, we could show that this process is temperature-dependent. We investigated the chaperone-like activity of α-crystallin towards photo-induced aggregation of γ-crystallin, aggregation of insulin and on the refolding induced aggregation of β- and γ-crystallins. We observed that α-crystallin could prevent photo-aggregation of γ-crystallin and this chaperone-like activity of α-crystallin is enhanced several fold at temperatures above 30°C. This enhancement parallels the exposure of its hydrophobic surfaces as a function of temperature, probed using hydrophobic fluorescent probes such as pyrene and 8-anilinonaphthalene-1-sulfonate. We, therefore, concluded that α-crystallin prevents the aggregation of other proteins by providing appropriately placed hydrophobic surfaces; a structural transition above 30°C involving enhanced or re-organized hydrophobic surfaces of α-crystallin is important for its chaperone-like activity. We also addressed the issue of conformational aspects of target proteins and found that their aggregation prone molten globule states bind to α-crystallin. We trace these developments and discuss some new lines that suggest the role of tertiary structural aspects in the chaperone process.  相似文献   
63.
The structural and spectroscopic properties of [Ru(phen)2(dppz)]2+ and [Ru(tap)2(dppz)]2+ (phen = 1,10-phenanthroline; tap = 1,4,5,8-tetraazaphenanthrene; dppz = dipyridophenazine ) have been investigated by means of density functional theory (DFT), time-dependent DFT (TD-DFT) within the polarized continuum model (IEF-PCM) and quantum mechanics/molecular mechanics (QM/MM) calculations. The model of the Δ and Λ enantiomers of Ru(II) intercalated in DNA in the minor and major grooves is limited to the metal complexes intercalated in two guanine-cytosine base pairs. The main experimental spectral features of these complexes reported in DNA or synthetic polynucleotides are better reproduced by the theoretical absorption spectra of the Δ enantiomers regardless of intercalation mode (major or minor groove). This is especially true for [Ru(phen)2(dppz)]2+. The visible absorption of [Ru(tap)2(dppz)]2+ is governed by the MLCTtap transitions regardless of the environment (water, acetonitrile or bases pair), the visible absorption of [Ru(phen)2(dppz)]2+ is characterized by transitions to metal-to-ligand-charge-transfer MLCTdppz in water and acetonitrile and to MLCTphen when intercalated in DNA. The response of the ILdppz state to the environment is very sensitive. In vacuum, water and acetonitrile these transitions are characterized by significant oscillator strengths and their positions depend significantly on the medium with blue shifts of about 80 nm when going from vacuum to solvent. When the complex is intercalated in the guanine-cytosine base pairs the 1ILdppz transition contributes mainly to the band at 370 nm observed in the spectrum of [Ru(phen)2(dppz)]2+ and to the band at 362 nm observed in the spectrum of [Ru(tap)2(dppz)]2+.  相似文献   
64.
The side chain interaction index (SCII) is a method of calculating the propensity for short-range interactions among side chains within a peptide sequence. Here, it is shown that the SCII values of secondary structure elements that have been shown to fold early and independently cluster separately from those of structures that fold later and/or are dependent on long-range interactions. In addition, the SCII values of engineered peptides that spontaneously adopt a particular desired fold in solution are significantly different from those of engineered peptides that fail to exhibit a stable conformation. Thus, the SCII, as a measure of local structural stability, constitutes a useful tool in folding prediction and in protein/peptide engineering. A program that allows rapid calculation of SCII values is presented.  相似文献   
65.
Treatment of NaO2CCHC(Me)Fc with cadmium acetate and iron(II) sulfate in the presence of 2,2′-bipy yielded [Cd2Fe(μ-O2CCHC(Me)Fc)22-O2CCHC(Me)Fc)222-O2CCHC(Me)Fc)2(2,2′-bipy)2] · 2H2O (1); while from NaO2CC6H4{C(O)Fc-o}, cadmium acetate, and pbbm the product was {[Cd(η2-O2CC6H4{C(O)Fc-o})2(pbbm)] · 0.5H2O}n (2) [Fc = (η5-C5H5)Fe(C5H45); 2,2′-bipy = 2,2′-bipyridyl; pbbm = 1,1′-(1,5-pentamethylene)bis-1H-benzimidazole]. Compounds 1 and 2 have been characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction. In centro-symmetric crystalline 1, the Fe and the two flanking atoms are six-coordinate; the three carboxylato ligands between the Fe and a Cd atom have different coordination modes. Crystalline 2 consists of an infinite polymeric chain, in which adjacent [Cd(η2-O2CC6H4{C(O)Fc-o})2] units are linked by pbbm ligands; thus each Cd atom is six-coordinate. Some electrochemical properties of the two complexes are reported.  相似文献   
66.
The 5′ leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via intermolecular kissing loop (KL) base pairing. The KL dimer can be stabilized by including the DIS stem nucleotides in the intermolecular base pairing, forming an extended dimer (ED). The role of the ED RNA dimer in HIV-1 replication has hardly been addressed because of technical challenges. We analyzed a set of leader mutants with a stabilized DIS hairpin for in vitro RNA dimerization and virus replication in T cells. In agreement with previous observations, DIS hairpin stability modulated KL and ED dimerization. An unexpected previous finding was that mutation of three nucleotides immediately upstream of the DIS hairpin significantly reduced in vitro ED formation. In this study, we tested such mutants in vivo for the importance of the ED in HIV-1 biology. Mutants with a stabilized DIS hairpin replicated less efficiently than WT HIV-1. This defect was most severe when the upstream sequence motif was altered. Virus evolution experiments with the defective mutants yielded fast replicating HIV-1 variants with second site mutations that (partially) restored the WT hairpin stability. Characterization of the mutant and revertant RNA molecules and the corresponding viruses confirmed the correlation between in vitro ED RNA dimer formation and efficient virus replication, thus indicating that the ED structure is important for HIV-1 replication.  相似文献   
67.
Phenolic compounds, named integracin D (1), (7′R, 8′S, 8S)-8-hydroxyisoguaiacin (3), (2R, 3R) pinobanksin-3-caffeoylate (5) and threo-8S-7-methoxysyringylglycerol (6), respectively, were isolated from the Chinese mangrove plant Laguncularia racemosa (L) Gaertn. f. (Combretaceae), together with 23 known phenolic metabolites. Their structures were elucidated on the basis of extensive spectroscopic analyses including that of IR, UV, MS, CD, 1D and 2D NMR spectra as well as by comparison with literature data. Compound 5 showed significant anti-oxidative activity in the DPPH and TEAC free-radical-scavenging assays, while several of the phenolic compounds were tested for protein kinase inhibitory activity in an assay involving 24 different human tumor related protein kinases. Compounds 5, 7, and 23 showed potential inhibition with IC50 values between 2.2 and 3.6 μg/mL toward individual kinases. The ellagic acid derivatives were tested for insecticidal activity.  相似文献   
68.
Epidermal lipoxygenase-3 (eLOX3) exhibits hydroperoxide isomerase activity implicated in epidermal barrier formation, but its potential dioxygenase activity has remained elusive. We identified herein a synthetic fatty acid, 9E,11Z,14Z-20:3ω6, that was oxygenated by eLOX3 specifically to the 9S-hydroperoxide. Reaction showed a pronounced lag phase, which suggested that eLOX3 is deficient in its activation step. Indeed, we found that high concentrations of hydroperoxide activator (e.g. 65 μM) overcame a prolonged lag phase (>1 h) and unveiled a dioxygenase activity with arachidonic acid; the main products were the 5-, 9-, and 7-hydroperoxyeicosatetraenoic acids (HPETEs). These were R/S mixtures (ranging from ~50:50 to 73:27), and as the bis-allylic 7-HPETE can be formed only inside the enzyme active site, the results indicate there is oxygen availability along either face of the reacting fatty acid radical. That the active site oxygen supply is limited is implied from the need for continuous re-activation, as carbon radical leakage leaves the enzyme in the unactivated ferrous state. An Ala-to-Gly mutation, known to affect the positioning of O(2) in the active site of other lipoxygenase enzymes, led to more readily activated reaction and a significant increase in the 9R- over the 5-HPETE. Activation and cycling of the ferric enzyme are thus promoted using the 9E,11Z,14Z-20:3ω6 substrate, by continuous hydroperoxide activation, or by the Ala-to-Gly mutation. We suggest that eLOX3 represents one end of a spectrum among lipoxygenases where activation is inefficient, favoring hydroperoxide isomerase cycling, with the opposite end represented by readily activated enzymes in which dioxygenase activity is prominent.  相似文献   
69.
70.
Several aspects of mitotic spindle assembly are orchestrated by the Ran GTPase through its modulation of the interaction between spindle assembly factors and importin-α. One such factor is TPX2 that promotes microtubule assembly in the vicinity of chromosomes. TPX2 is inhibited when bound to importin-α, which occurs when the latter is bound to importin-β. The importin-α:β interaction is disrupted by the high RanGTP concentration near the chromosomes, releasing TPX2. In more distal regions, where Ran is predominantly GDP-bound, TPX2 remains bound to importin-α and so is inhibited. Here we use a combination of structural and biochemical methods to define the basis for TPX2 binding to importin-α. A 2.2 Å resolution crystal structure shows that the primary nuclear localization signal (284KRKH287) of TPX2, which has been shown to be crucial for inhibition, binds to the minor NLS-binding site on importin-α. This atypical interaction pattern was confirmed using complementary binding studies that employed importin-α variants in which binding to either the major or minor NLS-binding site was impaired, together with competition assays using the SV40 monopartite NLS that binds primarily to the major site. The different way in which TPX2 binds to importin-α could account for much of the selectivity necessary during mitosis because this would reduce the competition for binding to importin-α from other NLS-containing proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号