首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8685篇
  免费   506篇
  国内免费   323篇
  2024年   5篇
  2023年   101篇
  2022年   187篇
  2021年   213篇
  2020年   190篇
  2019年   223篇
  2018年   313篇
  2017年   176篇
  2016年   175篇
  2015年   234篇
  2014年   606篇
  2013年   641篇
  2012年   425篇
  2011年   515篇
  2010年   527篇
  2009年   629篇
  2008年   645篇
  2007年   617篇
  2006年   550篇
  2005年   470篇
  2004年   388篇
  2003年   357篇
  2002年   295篇
  2001年   141篇
  2000年   124篇
  1999年   115篇
  1998年   135篇
  1997年   83篇
  1996年   53篇
  1995年   66篇
  1994年   54篇
  1993年   44篇
  1992年   34篇
  1991年   18篇
  1990年   19篇
  1989年   12篇
  1988年   11篇
  1987年   15篇
  1986年   7篇
  1985年   16篇
  1984年   19篇
  1983年   14篇
  1982年   16篇
  1981年   9篇
  1980年   8篇
  1979年   5篇
  1978年   3篇
  1976年   2篇
  1973年   3篇
  1972年   3篇
排序方式: 共有9514条查询结果,搜索用时 521 毫秒
191.
Abstract

Electron holes are known to migrate along the DNA or RNA duplexes and to localize preferentially on successive guanines. The stationary point conformations of Gua pairs that can trap or let pass these holes have been characterized by quantum chemistry calculations. Here we show their recurrent occurrence in DNA and RNA X-ray structures, often in quadruplex conformations or in interaction with proteins, ligands or metal ions. These findings give support to the biological, possibly regulatory, roles of charge migration in cell functioning.  相似文献   
192.
193.
Domains are the main structural and functional units of larger proteins. They tend to be contiguous in primary structure and can fold and function independently. It has been observed that 10–20% of all encoded proteins contain duplicated domains and the average pairwise sequence identity between them is usually low. In the present study, we have analyzed the structural similarity between domain repeats of proteins with known structures available in the Protein Data Bank using structure-based inter-residue interaction measures such as the number of long-range contacts, surrounding hydrophobicity, and pairwise interaction energy. We used RADAR program for detecting the repeats in a protein sequence which were further validated using Pfam domain assignments. The sequence identity between the repeats in domains ranges from 20 to 40% and their secondary structural elements are well conserved. The number of long-range contacts, surrounding hydrophobicity calculations and pairwise interaction energy of the domain repeats clearly reveal the conservation of 3-D structure environment in the repeats of domains. The proportions of mainchain–mainchain hydrogen bonds and hydrophobic interactions are also highly conserved between the repeats. The present study has suggested that the computation of these structure-based parameters will give better clues about the tertiary environment of the repeats in domains. The folding rates of individual domains in the repeats predicted using the long-range order parameter indicate that the predicted folding rates correlate well with most of the experimentally observed folding rates for the analyzed independently folded domains.  相似文献   
194.
Chikungunya fever is one of the reemerging vector-borne diseases. It has become a major global health problem especially in the developing countries. There are no vaccines or specific antiviral drugs available to date. This study reports small molecule inhibitors of envelope glycoprotein 2 (E2 glycoprotein) which are predicted based on Chikungunya virus–host interactions. E2 glycoprotein of Chikungunya virus interacts at 216 residue of the host receptor protein which plays a vital role in initiating infection. Understanding the structural aspects of E2 glycoprotein is crucial to develop specific inhibitors to prevent the virus binding from host receptors. In silico method was adopted to predict the sequence motifs of envelope protein, as the method like yeast two hybrid system is laborious, time consuming, and costly. The E2 glycoprotein structure of the Indian isolate was modeled using two templates (2XFC and 3JOC) and then validated. The class III PDZ domain binding motif was found to be identified at 213–216 amino acids. The corresponding peptide structures which recognize the PDZ domain binding motif were identified by the literature search and were used for generating five point pharmacophore model (ADDDR) containing acceptor, donor and aromatic ring features. Databases such as Asinex, TosLab and Maybridge were searched for the matches for the predicted pharmacophore model. Two compounds were identified as lead molecules as their glide score is?>?5?kcal/mol. Since the pharmacophore model is developed based on Chikungunya virus–host interaction, it can be used for designing promising antiviral lead compounds for the treatment of Chikungunya fever.An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:21  相似文献   
195.
Abstract

Poly (Val-Gly-Gly-Leu-Gly), a polypeptide mimicking the physico-chemical properties of the glycine-rich regions of elastin, has been synthesized and studied both in solution and in the aggregated state. By comparison, also the conformation of different “monomeric” units has been investigated. The polymer showed increased disorder with respect to the “monomers”, the molecular conformation being accounted for by a more or less random collection of isolated β-turns. Nevertheless, in the solid state the polymer is able to adopt supramolecular structures reminiscent of those found for elastin.  相似文献   
196.
197.
Abstract

LNA (Locked Nucleic Acids) is a novel oligonucleotide analogue containing a conformationally restricted nucleotide with a 2′-0, 4′-C-methylene bridge that induces unprecedented thermal affinities when mixed with complementary single stranded DNA and RNA. We have used two-dimensional'H NMR spectroscopy obtained at 750 and 500 MHz to determine a high resolution solution structure of an LNA oligonucleotide hybridized to the complementary DNA strand. The determination of the structure was based on a complete relaxation matrix analysis of the NOESY cross peaks followed by restrained molecular dynamics calculations. Forty final structures were generated for the duplex from A-type and B-type dsDNA starting structures. The root-mean-square deviation (RMSD) of the coordinates for the forty structures of the complex was 0.32Å. The structures were analysed by use of calculated helix parameters. This showed that the values for rise and buckle in the LNA duplex is markedly different from canonical B-DNA at the modification site. A value of twist similar to A-DNA is also observed at the modification site. The overall length of the helix which is 27.3Å. The average twist over the sequence are 35.9° ± 0.3°. Consequently, the modification does not cause the helix to unwind. The bis-intercalation of the thiazole orange dye TOTO to the LNA duplex was also investigated by 1H NMR spectroscopy to sense the structural change from the unmodified oligonucleotide. We observed that the bis-intercalation of TOTO is much less favourable in the 5′-CTLAG-3′ site than in the unmodified 5′-CTLAG-3′ site. This was related to the change in the base stacking of the LNA duplex compared to the unmodified duplex.  相似文献   
198.
Traditionally biased usage of synonymous codons renders selective advantage to proteins expressed at high levels with a few exceptions like in Escherichia coli. Proteome-wide characteristics indicative of trends in highly expressed proteins of E. coli is analyzed in this communication. Implications for the nature of interactions performed by these two groups of highly expressed proteins are discussed here. The group of highly expressed proteins having optimized codon usage through employment of most abundant tRNAs is already shielded from misfolding by their improved error-prone translational machinery. Our data also provide evidence for mechanism by which a significant proportion of highly expressed proteins with high intrinsic disorder evade degradation and successfully carry out their function.  相似文献   
199.
Mutations or deletions of FMRP, involved in the regulation of mRNA metabolism in brain, lead to the Fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. A severe manifestation of the disease has been associated with the Ile304Asn mutation, located on the KH2 domain of the protein. Several hypotheses have been proposed to explain the possible molecular mechanism responsible for the drastic effect of this mutation in humans. Here, we performed a molecular dynamics simulation and show that the Ile304Asn mutation destabilizes the hydrophobic core producing a partial unfolding of two α-helices and a displacement of a third one. The affected regions show increased residue flexibility and motion. Molecular docking analysis revealed strongly reduced binding to a model single-stranded nucleic acid in agreement with known data that the two partially unfolded helices form the RNA-binding surface. The third helix, which we show here to be also affected, is involved in the PAK1 protein interaction. These two functional binding sites on the KH2 domain do not overlap spatially, and therefore, they can simultaneously bind their targets. Since the Ile304Asn mutation affects both binding sites, this may justify the severe clinical manifestation observed in the patient in which both mRNA metabolism activity and cytoskeleton remodeling would be affected.  相似文献   
200.
Prokaryotes and eukaryotes respond to various environmental stimuli using the two-component system (TCS). Essentially, it consists of membrane-bound histidine kinase (HK) which senses the stimuli and further transfers the signal to the response regulator, which in turn, regulates expression of various target genes. Recently, sequence-based genome wide analysis has been carried out in Arabidopsis and rice to identify all the putative members of TCS family. One of the members of this family i.e. AtHK1, (a putative osmosensor, hybrid-type sensory histidine kinase) is known to interact with AtHPt1 (phosphotransfer proteins) in Arabidopsis. Based on predicted rice interactome network (PRIN), the ortholog of AtHK1 in rice, OsHK3b, was found to be interacting with OsHPt2. The analysis of amino acid sequence of AtHK1 showed the presence of transmitter domain (TD) and receiver domain (RD), while OsHK3b showed presence of three conserved domains namely CHASE (signaling domain), TD, and RD. In order to elaborate on structural details of functional domains of hybrid-type HK and phosphotransfer proteins in both these genera, we have modeled them using homology modeling approach. The structural motifs present in various functional domains of the orthologous proteins were found to be highly conserved. Binding analysis of the RD domain of these sensory proteins in Arabidopsis and rice revealed the role of various residues such as histidine in HPt protein which are essential for their interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号