首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3007篇
  免费   115篇
  国内免费   40篇
  2024年   1篇
  2023年   23篇
  2022年   38篇
  2021年   38篇
  2020年   50篇
  2019年   69篇
  2018年   64篇
  2017年   48篇
  2016年   53篇
  2015年   67篇
  2014年   122篇
  2013年   193篇
  2012年   78篇
  2011年   99篇
  2010年   64篇
  2009年   90篇
  2008年   115篇
  2007年   155篇
  2006年   142篇
  2005年   124篇
  2004年   155篇
  2003年   146篇
  2002年   113篇
  2001年   69篇
  2000年   67篇
  1999年   80篇
  1998年   82篇
  1997年   84篇
  1996年   80篇
  1995年   75篇
  1994年   82篇
  1993年   62篇
  1992年   66篇
  1991年   67篇
  1990年   52篇
  1989年   51篇
  1988年   44篇
  1987年   45篇
  1986年   30篇
  1985年   23篇
  1984年   12篇
  1983年   5篇
  1982年   15篇
  1981年   13篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
排序方式: 共有3162条查询结果,搜索用时 171 毫秒
101.
Summary The effect of vasopressin on voltage-sensitive Ca2+ currents in the rat insulinoma cell line RINm5F has been investigated in patch-clamp whole-cell and single-channel current recording experiments. In the whole-cell recording configuration the dominant inward current in the presence of tetrodotoxin was noninactivating and had a high voltage threshold. This current was much enhanced when external Ca2+ was replaced by Ba2+ and was blocked by 1 m nifedipine. It can therefore be classified as an L-current. Vasopressin enhanced the L-current without changing the voltage threshold of activation or the voltage at which the peak current was observed. Vasopressin effects were seen at concentrations as low as 0.01nm, and the maximal effect was observed at about 1nm. In higher concentrations the vasopressin effects were weaker, with effects at 50nm of about the same magnitude as at 0.01nm. In single-channel current recording experiments carried out with the cell-attached configuration there were no effects on single L-channel currents when vasopressin was added to the bath solution, but in experiments in which vasopressin (5nm) was infused into the patch pipette a marked increase in the apparent channel open state probability was observed. We conclude that vasopressin, a peptide that is known to markedly enhance glucose-evoked insulin secretion, stimulates opening of the voltage-sensitive Ca2+ channels in insulin-secreting cells.  相似文献   
102.
Summary Elementary Na+ currents were recorded at 19°C in cell attached and inside-out patches from cultured neonatal rat cardiocytes in order to study the effect of cAMP and other 6-aminopurines.The treatment of the cardiocytes with db-cAMP (1×10–3 mol/liter) led to a decline of reconstructed macroscopic peakI Na to 62±7.6% of the initial control value. This reduction in NP0 was mostly accompanied by a decrease in burst activity. Openstate kinetics were preserved even in DPI-modified, noninactivating Na+ channels. Since the stimulator of the adenylate cyclase, forskolin (1×10–6 mol/liter), evoked a similar pattern of response, the NP0 decrease can be considered as the functional correlate of Na+ channel phosphorylation brought about by cAMP-dependent protein kinase. As found in inside-out patches, cAMP (1×10–3 mol/liter) remained effective under cell-free conditions and reduced reconstructed macroscopic peakI NA to about 50% of the initial control value when the absence of Mg-ATP at the cytoplasmic membrane surface prevents phosphorylation reactions. A very similar response developed in the cytoplasmic presence of other 6-aminopurines including ATP (1×103 mol/liter), adenosine (1×10–4 mol/liter), adenine (1×10–5 mol/liter) and hypoxanthine (1×10–5 mol/liter). This susceptibility to adenine suggests that cardiac Na+ channelsin situ could sense intracellular fluctuations of adenine nucleotides, most likely of ATP.  相似文献   
103.
Summary Using the patch-clamp technique, we recorded whole-cell calcium current from isolated cardiac myocytes dissociated from the apical ventricles of 7-day and 14-day chick embryos. In 70% of 14-day cells after 24 hr in culture, two component currents could be separated from totalI Ca activated from a holding potential (V h) of –80 mV. L-type current (I L) was activated by depolarizing steps fromV h –30 or –40 mV. The difference current (I T) was obtained by subtractingI L, fromI Ca.I T could also be distinguished pharmacologically fromI L in these cells.I T was selectively blocked by 40–160 m Ni2+, whereasI L was suppressed by 1 m D600 or 2 m nifedipine. The Ni2+-resistant and D600-resistant currents had activation thresholds and peak voltages that were near those ofI T andI L defined by voltage threshold, and resembled those in adult mammalian heart. In 7-day cells,I T andI L could be distinguished by voltage threshold in 45% (S cells), while an additional 45% of 7-day cells were nonseparable (NS) by activation voltage threshold. Nonetheless, in mostNS cells,I Ca was partly blocked by Ni2+ and by D600 given separately, and the effects were additive when these agents were given together. Differences among the cells in the ability to separateI T andI L by voltage threshold resulted largely from differences in the position of the steady-state inactivation and activation curves along the voltage axis. In all cells at both ages in which the steady-state inactivation relation was determined with a double-pulse protocol, the half-inactivation potential (V 1/2) of the Ni2+-resistant currentI L averaged –18 mV. In contrast,V 1/2 of the Ni2+-sensitiveI T was –60 mV in 14-day cells, –52 mV in 7-dayS cells, and –43 mV in 7-day NS cells. The half-activation potential was near –2 mV forI L at both ages, but that ofI T was –38 mV in 14-day and –29 mV in 7-day cells. Maximal current density was highly variable from cell to cell, but showed no systematic differences between 7-day and 14-day cells. These results indicate that the main developmental change that occurs in the components ofI Ca is a negative shift with, embryonic age in the activation and inactivation relationships ofI T along the voltage axis.  相似文献   
104.
Summary The transepithelial water permeability in frog urinary bladder is believed to be essentially dependent on the ADH-regulated apical water permeability. To get a better understanding of the transmural water movement, the diffusional water permeability (P d) of the basolateral membrane of urinary bladder was studied. Access to this post-luminal barrier was made possible by perforating the apical membrane with amphotericin B. The addition of this antibiotic increasedP d from 1.12±0.10×10–4 cm/sec (n=7) to 4.08±0.33×10–4 cm/sec (n=7). The effect of mercuric sulfhydryl reagents, which are commonly used to characterize water channels, was tested on amphotericin B-treated bladders. HgCl2 (10–3 m) decreasedP d by 52% andpara-chloromercuribenzoic acid (pCMB) (1.4×10–4 m) by 34%. The activation energy for the diffusional water transport was found to increase from 4.52±0.23 kcal/mol (n=3), in the control situation, to 9.99±0.91 kcal/mol (n=4) in the presence of 1.4×10–4 m pCMB. Our second approach was to measure the kinetics of water efflux, by stop-flow light scattering, on isolated epithelial cells from urinary bladders.pCMB (0.5 or 1.4×10–4 m) was found to inhibit water exit by 91±2%. These data strongly support the existence of proteins responsible for water transport across the basolateral membrane, which are permanently present.  相似文献   
105.
Abstract: Recently we have shown that 4-aminopyridine (4-AP), a drug known to enhance transmitter release, stimulates the phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat brain synaptosomes and that this effect is dependent on the presence of extracellular Ca2+. Hence, we were interested in the relationship between changes induced by 4-AP in the intracellular free Ca2+ concentration ([Ca2+]i) and B-50 phosphorylation in synaptosomes. 4-AP (100 μ M ) elevates the [Ca2+]i (as determined with fura-2) to approximately the same extent as depolarization with 30 m M K+ (from an initial resting level of 240 n M to ∼480 n M after treatment). However, the underlying mechanisms appear to be different: In the presence of 4-AP, depolarization with K+ still evoked an increase in [Ca2+]i, which was additive to the elevation caused by 4-AP. Several Ca2+ channel antagonists (CdCl2, LaCl3, and diphenylhydantoin) inhibited the increase in B-50 phosphorylation by 4-AP. It is interesting that the increase in [Ca2+]i and the increase in B-50 phosphorylation by 4-AP were attenuated by tetrodotoxin, a finding pointing to a possible involvement of Na+ channels in this action. These results suggest that 4-AP (indirectly) stimulates both Ca2+ influx and B-50 phosphorylation through voltage-dependent channels by a mechanism dependent on Na+ channel activity.  相似文献   
106.
In this article, we demonstrate that an increase in intracellular Ca2+ concentration may represent a specific common step(s) in the mechanism(s) of action of glutamate (Glu) and depolarizing agents on formation of inositol phosphates (IPs) in 8-day-old rat forebrain synaptoneurosomes. In fact, A23187, a Ca2+ ionophore, induces a dose-dependent accumulation of IPs, which is not additive with that evoked by Glu and K+ but is slightly synergistic with that induced by carbachol. In addition, Glu and K+ augment the intracellular Ca2+ concentration in synaptoneurosome preparations as measured by the fura-2 assay. The absence of external Ca2+ decreases basal and Glu-, and K(+)-stimulated formation of IPs. Cd2+ (100 microM) fully inhibits both Glu- and K(+)-evoked formation of IPs without affecting the carbachol-elicited response of IPs. Zn2+ inhibits Glu- and K(+)-stimulated accumulation of IPs (IC50 approximately 0.4 mM) but with a lower affinity than Cd2+ (IC50 approximately 0.035 mM). The organic Ca2+ channel blockers verapamil (10 microM), nifedipine (10 microM), omega-conotoxin (2 microM), and amiloride (10 microM) as well as the inorganic blockers Co2+ (100 microM) and La3+ (100 microM) block neither Glu- nor K(+)-evoked formation of IPs, a result suggesting that the opening of the L-, T-, N-, or P-type Ca2+ channels does not participate in these responses. All these data suggest that an increase in intracellular Ca2+ concentration resulting from an influx of Ca2+, sensitive to Cd2+ but not to other classical Ca2+ antagonists, may play a key role in the transduction mechanism activated by Glu or depolarizing agents.  相似文献   
107.
In this study, we report the effect of pertussis toxin pretreatment on dihydropyridine modulation of voltage-sensitive calcium channels in PC12 cells. The rise in intracellular calcium concentration caused by potassium depolarization is not affected significantly by pertussis toxin pretreatment. Nicardipine, a dihydropyridine derivative, added either before or after potassium-induced depolarization, reduces the resultant elevation in cytosolic calcium level both in control and in pertussis toxin-treated cells. The dihydropyridine agonist Bay K 8644, when added before potassium, is able to enhance the potassium-induced spike of cytosolic calcium levels, an effect significantly reduced by pertussis toxin pretreatment. Moreover, the addition of Bay K 8644 after potassium holds the intracellular calcium concentration at a cytosolic sustained level during the slow inactivating phase of depolarization. This effect of Bay K 8644 is inhibited by nicardipine. Pertussis toxin pretreatment slightly weakens the effect of Bay K 8644 when added after potassium-induced depolarization, whereas it significantly reduces the nicardipine inhibition of cytosolic calcium rise stimulated by potassium and Bay K 8644, but not by potassium alone. In conclusion, our findings suggest that a pertussis toxin-sensitive guanine nucleotide regulatory protein could be involved in the interaction between dihydropyridine derivatives and voltage-dependent calcium channels.  相似文献   
108.
The biological activities of maitotoxin are strictly dependent on the extracellular calcium concentration and are always associated with an increase of the free cytosolic calcium level. We tested the effects of voltage-sensitive calcium channel blockers (nicardipine and omega-conotoxin) on maitotoxin-induced intracellular calcium increase, membrane depolarization, and inositol phosphate production in PC12 cells. Maitotoxin dose dependently increased the cytosolic calcium level, as measured by the fluorescent probe fura 2. This effect disappeared in a calcium-free medium; it was still observed in the absence of extracellular sodium and was enhanced by the dihydropyridine calcium agonist Bay K 8644. Nicardipine inhibited the effect of maitotoxin on intracellular calcium concentration in a dose-dependent manner. The maitotoxin-induced calcium rise was also reduced by pretreating cells with omega-conotoxin. Pretreatment of cells with maitotoxin did not modify 125I-omega-conotoxin and [3H]PN 200-110 binding to PC12 membranes. Nicardipine and omega-conotoxin inhibition of maitotoxin-evoked calcium increase was reduced by pertussis toxin pretreatment. Maitotoxin caused a substantial membrane depolarization of PC12 cells as assessed by the fluorescent dye bisoxonol. This effect was reduced by pretreating the cells with either nicardipine or omega-conotoxin and was almost completely abolished by the simultaneous pretreatment with both calcium antagonists. Maitotoxin stimulated inositol phosphate production in a dose-dependent manner. This effect was reduced by pretreating the cells with 1 microM nicardipine and was completely abolished in a calcium-free EGTA-containing medium. The findings on maitotoxin-induced cytosolic calcium rise and membrane depolarization suggest that maitotoxin exerts its action primarily through the activation of voltage-sensitive calcium channels, the increase of inositol phosphate production likely being an effect dependent on calcium influx. The ability of nicardipine and omega-conotoxin to inhibit the effect of maitotoxin on both calcium homeostasis and membrane potential suggests that L- and N-type calcium channel activation is responsible for the influx of calcium following exposure to maitotoxin, and not that a depolarization of unknown nature causes the opening of calcium channels.  相似文献   
109.
The LAN-1 clone, a cell line derived from a human neuroblastoma, possesses muscarinic receptors. The stimulation of these receptors with increasing concentrations of carbachol (CCh; 1-1,000 microM) caused a dose-dependent increase of the intracellular free Ca2+ concentration ([Ca2+]i). This increase was characterized by an early peak phase (10 s) and a late plateau phase. The removal of extracellular Ca2+ reduced the magnitude of the peak phase to approximately 70% but completely abolished the plateau phase. The muscarinic-activated Ca2+ channel was gadolinium (Gd3+) blockade and nimodipine and omega-conotoxin insensitive. In addition, membrane depolarization did not cause any increase in [Ca2+]i. The CCh-induced [Ca2+]i elevation was concentration-dependently inhibited by pirenzepine and 4-diphenylacetoxy-N-methylpiperidine methiodide, two rather selective antagonists of M1 and M3 muscarinic receptor subtypes, respectively, whereas methoctramine, an M2 antagonist, was ineffective. The coupling of M1 and M3 receptor activation with [Ca2+]i elevation does not seem to be mediated by a pertussis toxin-sensitive guanine nucleotide-binding protein or by the diacylglycerol-protein kinase C system. The mobilization of [Ca2+]i elicited by M1 and M3 muscarinic receptor stimulation seems to be dependent on an inositol trisphosphate-sensitive intracellular store. In addition, ryanodine did not prevent CCh-induced [Ca2+]i mobilization, and, finally, LAN-1 cells appear to lack caffeine-sensitive Ca2+ stores, because the methylxanthine was unable to elicit intracellular Ca2+ mobilization, under basal conditions, after a subthreshold concentration of CCh (0.3 microM), or after thapsigargin.  相似文献   
110.
In vivo brain microdialysis was used to examine the role of potassium channel activation in dopamine (DA) autoreceptor function in the striatum of freely moving rats. Local application of the D2 receptor agonists quinpirole or N-0437 through the dialysis probe significantly reduced extracellular concentrations of DA. Local application of the D2 antagonist (-)-sulpiride produced significant increases in DA. Local perfusion with quinine, a K+ channel blocker, completely blocked the (-)-sulpiride-induced increases in DA but did not affect the DA agonist-induced decreases. (-)-Sulpiride completely blocked the effect of quinpirole on DA both in control and in quinine-treated animals. At the highest dose used, quinine caused a large transient increase in extracellular DA. Local application of tetrodotoxin or infusion of Mg2+ in the absence of Ca2+ did not prevent this quinine-induced transient increase in extracellular DA. These results demonstrate that DA autoreceptors in the striatum regulate DA release in awake, behaving animals. Local application of (-)-sulpiride increases DA levels by blocking the tonic activation of autoreceptors by endogenous DA. Quinine blocks the neuroleptic-induced increase in DA, perhaps by preventing the K+ channel opening that would normally accompany endogenous autoreceptor activation. The fact that exogenously applied DA receptor agonists can decrease extracellular DA levels in the presence of quinine suggests that they may be acting at extrasynaptic autoreceptors that are not tonically active in vivo. The effect of DA agonists on this site is via a DA receptor because it is blocked by (-)-sulpiride. However, this receptor does not appear to be coupled to a quinine-sensitive potassium channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号