首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2019年   1篇
  2018年   3篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   13篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   8篇
  2008年   5篇
  2007年   5篇
  2006年   8篇
  2005年   3篇
  2004年   4篇
  2003年   9篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
排序方式: 共有124条查询结果,搜索用时 437 毫秒
41.
Activation of airway smooth muscle (ASM) cells plays a central role in the pathophysiology of asthma. Because ASM is an important therapeutic target in asthma, it is beneficial to develop bioengineered ASM models available for assessing physiological and biophysical properties of ASM cells. In the physiological condition in vivo, ASM cells are surrounded by extracellular matrix (ECM) and exposed to mechanical stresses such as cyclic stretch. We utilized a 3-D culture model of human ASM cells embedded in type-I collagen gel. We further examined the effects of cyclic mechanical stretch, which mimics tidal breathing, on cell orientation and expression of contractile proteins of ASM cells within the 3-D gel. ASM cells in type-I collagen exhibited a tissue-like structure with actin stress fiber formation and intracellular Ca2+ mobilization in response to methacholine. Uniaxial cyclic stretching enhanced alignment of nuclei and actin stress fibers of ASM cells. Moreover, expression of mRNAs for contractile proteins such as α-smooth muscle actin, calponin, myosin heavy chain 11, and transgelin of stretched ASM cells was significantly higher than that under the static condition. Our findings suggest that mechanical force and interaction with ECM affects development of the ASM tissue-like construct and differentiation to the contractile phenotype in a 3-D culture model.  相似文献   
42.
We examined the exact shapes of the thread-like wind-receptor hairs in the cricket and cockroach. The diameters of hairs at various distances from the hair tip as measured by scanning electron microscopy revealed unexpected hair shapes. We had expected, a priori, that the shape of the hair would be a slender linearly tapered cone, but the measurements revealed hairs in the form of extremely elongated paraboloids. The diameter of the wind-receptor hairs varies with the square root of the distance from the hair tip, i.e., the diameter rapidly increases with the distance from the tip and is asymptotic to the base diameter. Both the cricket, Gryllus bimaculatus, and the cockroach, Periplaneta americana, showed the same hair shape. In both insects, the formation of the wind-receptor hair during metamorphosis seems to be controlled by a common cytological program. The shape of the hair constrains the mobility of the wind-receptor hair, because both the drag force caused by moving air and the moment of inertia of motion dynamics are functions of shaft diameter. The shape of the hair is a biological trait which affects the sensory information transmitted to the central nervous system. Accepted: 24 February 1998  相似文献   
43.
Neural, mechanical and muscle factors influence muscle force production. This study was, therefore, designed to compare possible differences in the function of the neuromuscular system among differently adapted subjects. A group of 11 power-trained athletes and 10 endurance-trained athletes volunteered as subjects for this study. Maximal voluntary isometric force and the rate of force production of the knee extensor and the plantar flexor muscles were measured. In addition, basic reflex function was measured in the two experimental conditions. The power athletes produced higher voluntary forces (P<0.01-0.001) with higher rates for force production (P<0.001) by both muscle groups measured. Unexpectedly, however, no differences were noticed in the electromyogram time curves between the groups. During reflex activity, the endurance group demonstrated higher sensitivity to the mechanical stimuli, i.e. the higher reflex amplitude caused a higher rate of reflex force development, and the reflex amplitude correlated with the averaged angular velocity. The differences in the isometric conditions could be explained by obviously different muscle fibre distribution, by different amounts of muscle mass, by possible differences in the force transmission from individual myofibrils to the skeletal muscle and by specificity of training. In addition, differences in nervous system structure and muscle spindle properties could explain the observed differences in reflex activity between the two groups.  相似文献   
44.
Maize (Zea mays L.) Dwarf8-1 (D8-1) is an andromonoecious dwarf mutant proposed to be involved in gibberellin (GA) reception (Fujioka et al. 1988b; Harberd and Freeling 1989). The mutant D8-1 is dominant and GA-nonresponsive (Phinney 1956). We show by map position and similarity of phenotype that five additional dwarf mutants are D8 alleles. We show by map position and similarity of phenotype that a second andromonoecious dwarf mutant, D9-1, defines a duplicate gene. Maize D9-1 and each dominant D8 allele specify a different plant stature, from very mild to very severe dwarfism. Plants of D9-1 and all dominant D8 alleles, except D8-1591, were GA-nonresponsive when treated with 7500 nmol GA3. The behavior of the mild dwarf D8-1591 was unique in that a small but significant growth response was detected (37% for D8-1591 vs. 130% for the wild type) when treated with 7500 nmol GA3. These results establish that all dwarf genotypes, except D8-1591, in one dose set a maximum limit on plant growth and block the normal response to GA. When treated with the GA-synthesis inhibitor paclobutrazol, plants of all dwarf genotypes and wild-type siblings were severely dwarfed. Plants of all dwarf genotypes treated with the GA-synthesis inhibitor paclobutrazol and GA3 were returned to their normal dwarf phenotype. Dominant dwarfing, delayed flowering, increased tillering, and anther development in the ear are characteristic features of D9-1 and all D8 alleles. The GA-synthesis-deficient dwarfs also have these characteristic features. We discuss the function of the wild-type gene product in the context of the observed results.Abbreviations D8 Dwarf8 - D9 Dwarf9 - GA(n) gibberellin A(n) - GA3 gibberellic acid - MNL Maize Genetics Cooperation Newsletter - NIL near-isogenic lines - RFLP restriction fragment length polymorphism - WT wild type This work was supported, in part, by a National Science Foundation Plant Postdoctoral Fellowship to R.G.W., by grants from NIH and ICI Seeds to M.F., the NSF Center for Plant Developmental Biology and the California Agriculture Experiment Station. Much of the work was done in the laboratory of Tim Helentjaris and was supported by a grant from Pioneer Hi-Bred Int'l. The generous gifts of the dominant dwarfing mutants from M.G. Neuffer and O.E. Nelson Jr. are gratefully acknowledged.  相似文献   
45.
The endothelins (ET) peptide family consists of ET-1, ET-2, ET-3, and sarafotoxin (s6C, a snake venom) and their actions appears to be different among isoforms. The aim of this study was to compare the secretagogue effect of ET-1 on atrial natriuretic peptide (ANP) secretion with ET-3 and evaluate its physiological meaning. Isolated nonbeating atria from male Sprague-Dawley rats were used to evaluate stretch-activated ANP secretion in response to ET-1, ET-2, ET-3, and s6C. Changes in mean blood pressure (MAP) were measured during acute injection of ET-1 and ET-3 with and without natriuretic peptide receptor-A antagonist (A71915) in anesthetized rats. Changes in atrial volume induced by increased atrial pressure from o to 1, 2, 4, or 6 cm H2O caused proportional increases in mechanically-stimulated extracellular fluid (ECF) translocation and stretch-activated ANP secretion. ET-1 (10 nM) augmented basal and stretch-activated ANP secretion in terms of ECF translocation, which was blocked by the pretreatment with ETA receptor antagonist (BQ123, 1 μM) but not by ETB receptor antagonist (BQ788, 1 μM). ETA receptor antagonist itself suppressed stretch-activated ANP secretion. As compared to ET-1- induced ANP secretion (3.2-fold by 10 nM), the secretagogue effects of ANP secretion by ET-2 was similar (2.8-fold by 10 nM) and ET-3 and s6C were less potent (1.7-fold and 1.5-fold by 100 nM, respectively). Acute injection of ET-1 or ET-3 increased mean blood pressure (MAP), which was augmented in the presence of natriuretic peptide receptor-A antagonist. Therefore, we suggest that the order of secretagogue effect of ET family on ANP secretion was ET-1  ET-2 >> ET-3 > s6C and ET-1-induced ANP secretion negatively regulates the pressor effect of ET-1.  相似文献   
46.
The chemosensory nature of the tissue from the dorsal surface of the head (also termed sensory pad; SP) of the amphihaline diadromous fish hilsa Tenualosa ilisha was investigated for odorant receptor (OR), olfactory marker protein (OMP) and G-protein subunits (Gαs-olf, Gαq, Gαo, Gαi3) through immunolocalization and immunoblotting techniques. The immunolocalization of OR, OMP and G-protein subunits showed clear expression of these proteins in the tissues of the SP. Robust expressions of these proteins in the SP were detected with immunoblot analysis. The strong expression of these proteins in the SP indicates that the tissues from this area in riverine T. ilisha may play significant role in chemosensing and signalling through ectopic expression of olfactory receptor proteins which are otherwise reported in olfactory organs in vertebrates. Being migratory in nature, ectopic expression of these receptors in T. ilisha probably helps them to prevent damage to epidermal tissues of the SP, or they may also utilize them as a chemo and mechanosensory tool to optimize chemo-communications during migration.  相似文献   
47.
《Developmental cell》2021,56(21):2938-2951.e6
  1. Download : Download high-res image (277KB)
  2. Download : Download full-size image
  相似文献   
48.
Interstitial cells of Cajal in the subserosa (ICC-SS) of the guinea-pig proximal colon were studied by immunohistochemistry for c-Kit receptors and by transmission electron microscopy. These cells were distributed within a thin layer of connective tissue space immediately beneath the mesothelium and were multipolar with about five primary cytoplasmic processes that divided further into secondary and tertiary processes to form a two-dimensional network. Ultrastructural observations revealed that ICC-SS were connected to each other via gap junctions. They also formed close contacts and peg-and-socket junctions with smooth muscle cells. Three-dimensional analysis of confocal micrographs revealed that the cytoplasmic processes of ICC-SS had contacts with interstitial cells in the longitudinal muscle layer. Taking account of the location and peculiar arrangement of the ICC-SS and the main functions of the proximal colon, i.e. the absorption and transport of fluids, we suggest that the superficial network of ICC-SS acts as a stretch receptor to detect circumferential expansion and swelling of the colon wall and triggers the contraction of the longitudinal muscle to accelerate the drainage of fluids from the colon.  相似文献   
49.
Both mechanical induction and mechanical termination of arrhythmias have been reported in man. Examples include pre-cordial impacts by sports implements (baseballs, pucks) that can trigger arrhythmias, including ventricular fibrillation, or via the so-called pre-cordial thump, used as an emergency resuscitation measure to convert arrhythmias to normal sinus node rhythm. These interventions have been partially reproduced in experimental studies on whole animals. Relating observations at the system's level to underlying mechanisms has been difficult, however, largely because of: (i) a deficit in efficient and affordable pharmacological agents to selectively target (sub-)cellular responses in whole animal studies, and (ii) the lack of suitable experimental models to study the above responses at intermediate levels of functional and structural integration, such as the isolated heart or cardiac tissue. This paper presents a soft tissue impact characterisation kit (STICK), suitable for quantitative investigations into the effects of acute mechanical stimulation on cardiac electro-mechanical function in rodent isolated heart or tissue preparations. The STICK offers independent control over a range of relevant biophysical parameters, such as impact location and energy, pre-impact projectile speed and contact area, as well as over the timing of a mechanical stimulus relative to the cardiac cycle (monitored via electrocardiogram, ECG, here recorded directly from the cardiac surface). Projectile deceleration upon interaction with the tissue is monitored, contact-free, with a resolution of 175 μm, providing information on tissue deformation dynamics, force, pressure and work of the mechanical intervention. In order to study functional effects of cardiac mechanical stimulation in the absence of tissue damage, impacts must be limited (for juvenile Guinea pig heart) to 2–2.5 mJ in the slack left ventricle (diastolic impact) and 5–10 mJ in contracture (systolic impact), as confirmed by enzyme assay and histological investigation. Impacts, timed to coincide with the early T-wave of the ECG, are capable of triggering short runs of ventricular fibrillation. Thus, the STICK is a suitable tool for the study of acute cardiac mechano-electric feedback effects, caused by short impulse-like mechanical stimulation, at the level of the isolated organ or tissue.  相似文献   
50.
The inward rectifier potassium channel, Kir2.1, contributes to the I(K1) current in cardiac myocytes and is closely associated with atrial fibrillation. Strong evidences have shown that atrial dilatation or stretch may result in atrial fibrillation. However, the role of Kir2.1 channels in the stretch-mediated atrial fibrillation is not clear. In this study, we constructed the recombinant plasmid of KCNJ2 that encodes the Kir2.1 channel and expressed it in CHO-K1 cells. We recorded I(K1) currents using the whole-cell patch clamping technique. Our data showed that I(K1) currents were significantly larger under stretch in the hypotonic solution than under non-stretch in the iso-osmotic solution, and the activation kinetics of the Kir2.1 channel were changed markedly by stretch as well. Thus, atrial stretch in human heart might result in excessive I(K1) currents, which is likely to increase the resting membrane potential and decrease the effective refractory period, to initiate and/or maintain atrial fibrillation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号