首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3428篇
  免费   257篇
  国内免费   63篇
  2024年   14篇
  2023年   64篇
  2022年   86篇
  2021年   99篇
  2020年   94篇
  2019年   91篇
  2018年   84篇
  2017年   59篇
  2016年   70篇
  2015年   120篇
  2014年   316篇
  2013年   310篇
  2012年   257篇
  2011年   313篇
  2010年   193篇
  2009年   173篇
  2008年   178篇
  2007年   153篇
  2006年   127篇
  2005年   120篇
  2004年   130篇
  2003年   114篇
  2002年   79篇
  2001年   42篇
  2000年   41篇
  1999年   30篇
  1998年   50篇
  1997年   37篇
  1996年   33篇
  1995年   45篇
  1994年   37篇
  1993年   17篇
  1992年   33篇
  1991年   17篇
  1990年   17篇
  1989年   12篇
  1988年   12篇
  1987年   11篇
  1986年   9篇
  1985年   12篇
  1984年   9篇
  1983年   8篇
  1982年   6篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1969年   1篇
  1964年   1篇
排序方式: 共有3748条查询结果,搜索用时 15 毫秒
111.
112.
随着社会老龄化的进一步加剧,冠心痛、高血压、心肌病、恶性心律失常的发病率也成为导致人群中猝死率上升的重要诱发因素.对猝死发病机制的研究中,室性心动过速和室颤往往是导致病人发生猝死的最主要的终末事件.在这篇文章中我们通过12导联心电图(ECG)的心电学预测因子的研究,揭示心电学预测因子在预防心源性猝死中的临床应用价值.另一方面,如何能提高预防猝死的预测因子的敏感性和特异性,发现新的更有临床应用价值的心电学预测因子,更好的防治猝死对社会人群的危害,成为临床研究中不断探寻的答案.最后,我们将近年来对心源性猝死的防治措施及未来的发展方向做一简要的综述.  相似文献   
113.
114.
115.
Transmembrane Bax Inhibitor Motif-containing 6 (TMBIM6) gene acts as calcium leak channel and negatively regulates autophagy and autophagosome formation. The TMBIM6 gene was amplified and searched for variation in three different goat populations (i.e. Black Bengal, Ganjam and Raighar) of Odisha state of the India. The result indicated two substitutions i.e. 55th position (C55T) and 95th position (C95A) in the amplified region of the gene resulting in change of amino acids (Leu > Phe and Thr > Asn). The identified SNPs were combined to form haplotypes and animals were grouped accordingly. Structural analysis showed minor changes (5%) in between mutant and wild TMBIM6 protein structures. However, any functional variation could not be identified with respect to the calcium ligand and open pore state. But an alteration of calcium binding site was found. The binding interaction of calcium with the TMBIM6 protein was hydrophobic in nature in closed state whereas hydrophilic in open pore stage. The stress releasing function was the result of calcium leakage controlled by amino acids coded by exon 4 and exon 5 regions of TMBIM6 gene. The effect of breed and haplotype on cardiopulmonary traits was studied. The data on cardiopulmonary traits of body i.e. rectal temperature, skin temperature, heart rate and respiration rate were recorded when ambient temperature usually remained the highest. The statistical analysis showed, significant difference in rectal temperature, skin temperature and respiration rate among these goat populations. The haplotypes (CC and TA) were found to have a significant (P < 0.05) effect on rectal temperature, skin temperature and respiration rate. However, any such significant effect could not be identified in recorded heart rate. The objective of the present study to identify the genetic variations in TMBIM6 gene having significant effect on cardiopulmonary traits which can be further uses as the molecular markers to improve heat tolerance mechanism in goats.  相似文献   
116.
Dilated cardiomyopathy (DCM) is associated with mutations in cardiomyocyte sarcomeric proteins, including α-tropomyosin. In conjunction with troponin, tropomyosin shifts to regulate actomyosin interactions. Tropomyosin molecules overlap via tropomyosin–tropomyosin head-to-tail associations, forming a continuous strand along the thin filament. These associations are critical for propagation of tropomyosin''s reconfiguration along the thin filament and key for the cooperative switching between heart muscle contraction and relaxation. Here, we tested perturbations in tropomyosin structure, biochemistry, and function caused by the DCM-linked mutation, M8R, which is located at the overlap junction. Localized and nonlocalized structural effects of the mutation were found in tropomyosin that ultimately perturb its thin filament regulatory function. Comparison of mutant and WT α-tropomyosin was carried out using in vitro motility assays, CD, actin co-sedimentation, and molecular dynamics simulations. Regulated thin filament velocity measurements showed that the presence of M8R tropomyosin decreased calcium sensitivity and thin filament cooperativity. The co-sedimentation of actin and tropomyosin showed weakening of actin-mutant tropomyosin binding. The binding of troponin T''s N terminus to the actin-mutant tropomyosin complex was also weakened. CD and molecular dynamics indicate that the M8R mutation disrupts the four-helix bundle at the head-to-tail junction, leading to weaker tropomyosin–tropomyosin binding and weaker tropomyosin–actin binding. Molecular dynamics revealed that altered end-to-end bond formation has effects extending toward the central region of the tropomyosin molecule, which alter the azimuthal position of tropomyosin, likely disrupting the mutant thin filament response to calcium. These results demonstrate that mutation-induced alterations in tropomyosin–thin filament interactions underlie the altered regulatory phenotype and ultimately the pathogenesis of DCM.  相似文献   
117.
Myosin-binding protein C 3 (MYBPC3) variants are the most common cause of hypertrophic cardiomyopathy (HCM). HCM is a complex cardiac disorder due to its significant genetic and clinical heterogeneity. MYBPC3 variants genotype–phenotype associations remain poorly understood. We investigated the impact of two novel human MYBPC3 splice-site variants: V1: c.654+2_654+4dupTGG targeting exon 5 using morpholino MOe5i5; and V2: c.772+1G>A targeting exon 6 using MOe6i6; located within C1 domain of cMyBP-C protein, known to be critical in regulating sarcomere structure and contractility. Zebrafish MOe5i5 and MOe6i6 morphants recapitulated typical characteristics of human HCM with cardiac phenotypes of varying severity, including reduced cardiomyocyte count, thickened ventricular myocardial wall, a drastic reduction in heart rate, stroke volume, and cardiac output. Analysis of all cardiac morphological and functional parameters demonstrated that V2 cardiac phenotype was more severe than V1. Coinjection with synthetic human MYBPC3 messenger RNA (mRNA) partially rescued disparate cardiac phenotypes in each zebrafish morphant. While human MYBPC3 mRNA partially restored the decreased heart rate in V1 morphants and displayed increased percentages of ejection fraction, fractional shortening, and area change, it failed to revert the V1 ventricular myocardial thickness. These results suggest a possible V1 impact on cardiac contractility. In contrast, attempts to rescue V2 morphants only restored the ventricular myocardial wall hypertrophy phenotype but had no significant effect on impaired heart rate, suggesting a potential V2 impact on the cardiac structure. Our study provides evidence of an association between MYBPC3 exon-specific cardiac phenotypes in the zebrafish model providing important insights into how these genetic variants contribute to HCM disease.  相似文献   
118.
miR-222 participates in many cardiovascular diseases, but its effect on cardiac remodeling induced by diabetes is unclear. This study evaluated the functional role of miR-222 in cardiac fibrosis in diabetic mice. Streptozotocin (STZ) was used to establish a type 1 diabetic mouse model. After 10 weeks of STZ injection, mice were intravenously injected with Ad-miR-222 to induce the overexpression of miR-222. miR-222 overexpression reduced cardiac fibrosis and improved cardiac function in diabetic mice. Mechanistically, miR-222 inhibited the endothelium to mesenchymal transition (EndMT) in diabetic mouse hearts. Mouse heart fibroblasts and endothelial cells were isolated and cultured with high glucose (HG). An miR-222 mimic did not affect HG-induced fibroblast activation and function but did suppress the HG-induced EndMT process. The antagonism of miR-222 by antagomir inhibited HG-induced EndMT. miR-222 regulated the promoter region of β-catenin, thus negatively regulating the Wnt/β-catenin pathway, which was confirmed by β-catenin siRNA. Taken together, our results indicated that miR-222 inhibited cardiac fibrosis in diabetic mice via negatively regulating Wnt/β-catenin-mediated EndMT.  相似文献   
119.
The work was focused on the investigation of possible dependencies between the development of viral infection in plants and the presence of high heavy metal concentrations in soil. Field experiments have been conducted in order to study the development of systemic tobacco mosaic virus (TMV) infection in Lycopersicon esculentum L. cv. Miliana plants under effect of separate salts of heavy metals Cu, Zn and Pb deposited in soil. As it is shown, simultaneous effect of viral infection and heavy metals in tenfold maximum permissible concentration leads to decrease of total chlorophyll content in experiment plants mainly due to the degradation of chlorophyll a. The reduction of chlorophyll concentration under the combined influence of both stress factors was more serious comparing to the separate effect of every single factor. Plants' treatment with toxic concentrations of lead and zinc leaded to slight delay in the development of systemic TMV infection together with more than twofold increase of virus content in plants that may be an evidence of synergism between these heavy metal's and virus' effects. Contrary, copper although decreased total chlorophyll content but showed protective properties and significantly reduced amount of virus in plants.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号