首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4208篇
  免费   274篇
  国内免费   108篇
  2024年   7篇
  2023年   56篇
  2022年   65篇
  2021年   84篇
  2020年   93篇
  2019年   70篇
  2018年   71篇
  2017年   68篇
  2016年   72篇
  2015年   130篇
  2014年   328篇
  2013年   321篇
  2012年   272篇
  2011年   318篇
  2010年   215篇
  2009年   211篇
  2008年   237篇
  2007年   192篇
  2006年   172篇
  2005年   160篇
  2004年   169篇
  2003年   141篇
  2002年   127篇
  2001年   87篇
  2000年   74篇
  1999年   62篇
  1998年   81篇
  1997年   71篇
  1996年   66篇
  1995年   74篇
  1994年   65篇
  1993年   34篇
  1992年   53篇
  1991年   38篇
  1990年   42篇
  1989年   27篇
  1988年   25篇
  1987年   21篇
  1986年   19篇
  1985年   26篇
  1984年   24篇
  1983年   21篇
  1982年   23篇
  1981年   17篇
  1980年   15篇
  1979年   14篇
  1978年   12篇
  1977年   10篇
  1976年   3篇
  1973年   2篇
排序方式: 共有4590条查询结果,搜索用时 15 毫秒
901.
Frequencies and morphological and chronological distributions of enamel hypoplasias are presented by tooth type (permanent I1 to M2s), based on a sample of 30 prehistoric Amerindians with complete and unworn dentitions. There is nearly a tenfold variation in frequency of defects by tooth, ranging from 0.13 per mandibular second molar to 1.27 per maxillary central incisor. The six anterior teeth average between 0.70 and 1.27 defects/tooth, whereas the eight posterior teeth average between 0.43 and 0.13 defects/tooth. Earlier developing teeth, such as incisors, have earlier peak frequencies of defects (2.0-2.5 years), while later developing teeth, such as second molars, have subsequent peak frequencies (5.0-6.0 years). These variations are relevant when comparing hypoplasia data based on different teeth. Differences in hypoplasia frequencies among teeth are not solely due to variation in time of crown development, as is usually reported. Rather, there is evidence for biological gradients in susceptibility to ameloblastic disruption. Anterior teeth are more hypoplastic than posterior teeth. More developmentally stable "polar" teeth are more hypoplastic than surrounding teeth. Polar teeth may be more susceptible to hypoplasias because their developmental timing is less easily disrupted. In all teeth, hypoplasias are most common in the middle and cervical thirds. Crown development and morphological factors, such as enamel prism length and direction, may influence the development and expression of enamel surface defects.  相似文献   
902.
Measurements of metabolic rates of natural populations of zooplankton were made using a closed bottle technique in situ. Results showed a marked seasonality inexplicable in terms of simple temperature functions. For this cladoceran dominated zooplankton, seasonal variations in metabolic response are attributed to a degree of temperature acclimation, to changes in the size structure and species composition of the populations and seasonal variations in food sources.  相似文献   
903.
In the preceding report we demonstrated a dose-dependent increase in 32P-phosphoprotein labeling after 24-h exposure of cultured cerebellar granule neurons to methyl mercury (MeHg), a response that was not observed in glial cultures. In the present study we have examined 32P-labeled phosphoproteins by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. At concentrations of 0.5 and 1 microM, which were not extensively cytotoxic, MeHg enhanced phosphorylation of numerous acidic proteins, particularly a cluster of proteins with Mr approximately 28,000 and pI approximately 5.7-5.9 (pp 28/5.7-5.9) and a protein with Mr approximately 58,000 and pI approximately 5.6. The pp28 cluster displayed considerable two-dimensional pattern variability from one experiment to the next, suggesting susceptibility to subtle structural modifications. Time course studies revealed that increased 32P phospholabeling of pp28/5.7-5.9 was detectable after 12-h exposure to 3 microM MeHg and reached values of 300-500% of control by 24 h. These studies also showed that among the 21 proteins analyzed by two-dimensional densitometry, 32P phospholabeling of four proteins increased by 20-50% and of two proteins decreased by 20-50% after 24-h treatment. However, exposure to 10 microM MeHg produced stimulation of pp28/5.7-5.9 32P phospholabeling within 2 h. Under these conditions a relatively high stimulation (sevenfold) of pp28/5.7 phospholabeling occurred, while pp28/5.9 32P phospholabeling was only moderately (5-20%) enhanced. 35S and 32P double-label analysis of cells treated with 0, 0.5, and 1 microM MeHg indicated specific stimulation of 32P phospholabeling of these proteins without increased polypeptide synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
904.
Effects of photoperiod and temperature on frost resistance of seedling populations and clones of white clover (Trifolium repens L.) originating from various latitudes (58°48'–69°54'N) and altitudes (up to 1100 m above sea level) were studied in a phytotron. Low-temperature-induced cold acclimation in all populations was significantly stimulated by short photoperiod and low temperature. The highest levels of frost resistance were found in the northernmost seedling populations and in clones from northern coastal locations.  相似文献   
905.
Summary Common carp (Cyprinus carpio L.) were acclimated to either 2, 5, 8, 11, 15, 20, or 23°C for 12 weeks (12 h light: 12 h dark). Fish did not feed after 6 weeks at temperatures below 8°C. Skinned fibres were prepared from fast myotomal muscle by freeze-drying. Measured at 0°C unloaded contraction velocity (Vmax) and maximum isometric tension generation (Po) were 2–3 times higher in the 11°C-than 23°C-acclimated groups, and had intermediate values in 15 °C-acclimated fish. Po and Vmax at 0°C were not significantly different for carp maintained at 2, 5, 8, or 11°C. Measured at the acclimation temperature of each group Vmax and Po were 51% and 71% lower for fibres from 2°C- than 23°C-acclimated fish. The results indicate a partial capacity adaptation of muscle power output in fish acclimated between 11°C and 23°C. At 8°C the ATPase activity of myofibrils was 2 times higher in fish acclimated to 8°C than to 20°C. The effects of temperature acclimation on the protein composition of myofibrils was investigated using one- and two-dimensional electrophoresis. Peptide maps of purified myosin heavy chains and actin prepared by proteolytic digestion with either Staphylococcus aureus V8 protease or chymotrypsin were similar for both acclimation groups. The molecular weights and isoelectric points of the major isoforms of tropomyosin, troponin C, troponin I, troponin T, and myosin light chains (MLC1, MLC2 and MLC3) were also similar in 8°C- and 20°C-acclimated carp. A 20 kDa molecular weight protein with a pI intermediate between that for MLC2 and MLC3 was found in myofibrils and single fibres from carp acclimated to 8°C but was not present in carp acclimated to 20°C. It is suggested that this band corresponds to a myosin light chain isoform unique to cold-acclimated fish. Evidence was also obtained that myofibrils from warm-acclimated fish contained a second minor isoform of troponin I.  相似文献   
906.
Carbon assimilation and standing crop biomass of Spartina alterniflora were studied in a contrasting streamside and inland salt marsh in Louisiana Gulf coast, USA. A substantially lower leaf dry weight, leaf area index, and standing crop biomass were recorded for inland plants as compared to streamside plants. Net assimilation rates ranged between 8 to 25 mol m–2 s–1 for streamside and between 4 to 19 mol m–2 s–1 for inland plants. The average photosynthetic rates were significantly lower for inland plants which were growing in an apparently more stressed environment. In addition, the differences were more profound with progression of the growing season. The reduced photosynthetic activity in the inland marsh was attributed to greater soil waterlogging, increased anaerobic root respiration, plant toxins (sulfide), restricted nutrient uptake or a combination of these factors.Abbreviations Eh = redox potential - gw = stomatal conductance - LAI = leaf area index - Pn = net photosynthesis - PPFD = photosynthetic photon flux density - T1 = leaf temperature  相似文献   
907.
Binding of the benzodiazepine inverse agonist [3H]methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate [( 3H]DMCM) and the agonist [3H]flunitrazepam [( 3H]FNZ) was compared in rat cortical membranes. Halide ions enhanced [3H]DMCM binding three- to fourfold, increasing both the apparent affinity and the number of binding sites for this radioligand. The effect was present at both 0 and 37 degrees C. In contrast, the magnitude of halide stimulation of [3H]FNZ binding was much smaller, resulting solely from an increase in the apparent affinity for this radioligand, and was not observed at 37 degrees C. The potencies but not the efficacies of a series of anions to stimulate both [3H]DMCM and [3H]FNZ binding to benzodiazepine receptors were highly correlated with their relative permeabilities through gamma-aminobutyric acid (GABA)-gated chloride channels. Two stress paradigms (10 min of immobilization or ambient-temperature swim stress), previously shown to increase significantly the magnitude of halide-stimulated [3H]FNZ binding, did not significantly affect [3H]DMCM binding. Phospholipase A2 treatment of cortical membrane preparations was equipotent in preventing the stimulatory effect of chloride on both [3H]DMCM and [3H]FNZ binding. These data strongly suggest that anions modify the binding of [3H]DMCM and [3H]FNZ by acting at a common anion binding site that is an integral component of the GABA/benzodiazepine receptor chloride channel complex.  相似文献   
908.
Summary This research was undertaken to investigate differences in salt tolerance under conditions in which salinity is increased gradually and maintained for long periods or increased rapidly and maintained for shorter periods. The responses of populations of a C4 nonhalophytic grass, Andropogon glomeratus, to long- and short-term salinity were measured under controlled environment conditions. Additionally, plants from a salt marsh population and an inland population were transplanted into a salt marsh and their survival compared. The relative growth reductions in the salt marsh and the inland populations under long-term salinity were similar. Survival of seedlings of 4 populations inundated with full-strength seawater over a relatively short period indicated differential capacities to tolerate soil salinities imposed in a manner similar to tidal inundation in a salt marsh. The greater survival of plants from the marsh population transplanted into the salt marsh further indicated genetic differentiation between the populations. These results indicate that genetic differentiation to salt tolerance in A. glomeratus is better reflected by survival after shortterm salinity events, rather than growth inhibition due to long-term salinity imposed gradually.  相似文献   
909.
Frost resistance of leaves of holly ( Ilex aquifolium L.) increased from about −9°C in late summer to −24°C in mid-winter. The gradual rise in cold hardiness occurred when the minimum air temperature dropped to 0°C or below and was closely related to increase in the cellular sap concentration. Predominantly, the decrease in the osmotic potential of the cellular sap was caused by sugar accumulation, mainly of sucrose. The capacity of net photosynthesis of the leaves, as well as the total lipid and protein content and the proportion of individual lipids of the thylakoid membranes, did not significantly change during cold acclimation. The gradual shift towards desaturation in the fatty acids of the thylakoid lipids during the hardening period was neither correlated with alterations in the frost resistance nor did it affect the potential efficiency for various light-induced chloroplast membrane reactions such as linear photosynthetic electron transport, photophosphorylation and the proton gradient (ΔpH). It is suggested that in holly leaves reduction in cell volume changes during freeze-thawing and cryoprotection by sugars could play a dominant role for the increase in frost resistance. Seasonal changes in the degree of unsaturation of polar lipids of the thylakoids could contribute to maintain optimal functional efficiency of the membranes at low temperatures rather than to avoid freezing damage.  相似文献   
910.
The aim of this study was to investigate the extent to which fully developed leaves of Hedera helix L. are capable of acclimating to new light conditions and how this ability is determined by the life phase of the plant. To this end juvenile and adult plants were transferred from a low (L) to a moderately high (H) light regime and vice versa and changes of photosynthetic gas exchange, RuBP carboxylase (EC 4.1.1.39) activity and specific anatomy were monitored in leaves that were fully developed prior to the transfer.
Immediately after transfer from L to H there was a decrease in the rate of net photosynthesis (Fn). This photoinhibition was particularly pronounced in leaves of the adult life phase. Fn recovered after 10 to 20 days at H, and 40 to 65 days after transfer the rate exceeded that of control plants by about 20% in leaves of the adult life phase and by about 50% in leaves of the juvenile life phase. If H plants were transferred to L, Fn had declined only slightly after 30 to 40 days and regained its initial level within a few days, when the plants were returned to the original high light regime.
The increased rates of Fn per unit leaf area in leaves transferred from L to H were associated with higher light levels necessary to saturate Fn, higher carboxylation efficiencies, higher contents of soluble protein and higher activities of RuBP carboxylase, whereas the quantum yield did not change. Although fully differentiated before transfer, the leaves had formed a further cell layer in the palisade parenchyma. Related to leaf volume there was no increase in Fn.
Our results indicate that in the adult life phase of ivy phenotypie light acclimation occurs mainly during leaf development, whereas in juvenile plants fully expanded leaves still possess a rather wide modulativc acclimation plasticity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号