首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4208篇
  免费   274篇
  国内免费   108篇
  2024年   7篇
  2023年   56篇
  2022年   65篇
  2021年   84篇
  2020年   93篇
  2019年   70篇
  2018年   71篇
  2017年   68篇
  2016年   72篇
  2015年   130篇
  2014年   328篇
  2013年   321篇
  2012年   272篇
  2011年   318篇
  2010年   215篇
  2009年   211篇
  2008年   237篇
  2007年   192篇
  2006年   172篇
  2005年   160篇
  2004年   169篇
  2003年   141篇
  2002年   127篇
  2001年   87篇
  2000年   74篇
  1999年   62篇
  1998年   81篇
  1997年   71篇
  1996年   66篇
  1995年   74篇
  1994年   65篇
  1993年   34篇
  1992年   53篇
  1991年   38篇
  1990年   42篇
  1989年   27篇
  1988年   25篇
  1987年   21篇
  1986年   19篇
  1985年   26篇
  1984年   24篇
  1983年   21篇
  1982年   23篇
  1981年   17篇
  1980年   15篇
  1979年   14篇
  1978年   12篇
  1977年   10篇
  1976年   3篇
  1973年   2篇
排序方式: 共有4590条查询结果,搜索用时 15 毫秒
51.
Time courses of formation of inositol 1,4,5-trisphosphate (IP3) were followed in the leaves of non-acclimated and cold (2°C)-acclimated winter oilseed rape ( Brassica napus L. var. oleifera ) plants, subjected to different freezing temperatures or to polyethylene glycol 8000 (PEG) and abscisic acid (ABA) treatments. Changes in water potential (Ψw) and in ABA level in the frost- and PEG-treated tissues were also determined. Results obtained indicate that temperatures sligthly higher than LT50 induced a transient and substantial increase in IP3 level, both in non-acclimated and cold-acclimated tissues. At comparable freezing temperature (–5°C) the response of cold-acclimated leaves was lower than that of non-acclimated ones. The PEG-depedent decrease in Ψw to –0.9 MPa or ABA (0.1 m M ) treatment gave rise to a transient increase in IP3 content in non-acclimated tissues only. Collectively, the data indicate that cold acclimation of plants may lead to lower cell responsiveness to the factors studied in terms of induction of IP3 formation. Changes in the IP3 content, observed in the present experiments, support our previous suggestion that non-killing freezing temperatures may induce the phosphoinositide pathway, both in non-acclimated and cold-acclimated tissues. Lowering of tissue water potential to some threshold value or a high exogenous ABA supply may mimic the freezing-dependent reaction in the non-acclimated leaves.  相似文献   
52.
Three intergeneric hybrids were produced between a cold-tolerant wild species, Erucastrum abyssinicum and three cultivated species of Brassica, B. juncea, B. carinata and B. oleracea, through ovary culture. The hybrids were characterized by morphology, cytology and DNA analysis. Amphiploidy was induced in all the F1 hybrids through colchicine treatment. Stable amphiploids and backcross progenies were obtained from two of the crosses, E. abyssinicum x B. juncea and E. abyssinicum x B. carinata. The amphiploid, E. abyssinicum x B. juncea was successfully used as a bridge species to produce hybrids with B. napus, B. campestris and B. nigra. These hybrids and backcross progenies provide useful genetic variability for the improvement of crop brassicas.  相似文献   
53.
Corticotropin-releasing hormone (CRH) has been shown to be a central mediator for most, if not all, stress-induced responses. Since stressful stimuli may decrease hypothalamic tuberoinfundibular and tuberohypophysial dopaminergic neuronal activities, we aimed to determine whether CRH is involved. Using central administration of various doses of ovine CRH (oCRH; 1, 3 and 10 µg/rat) into the lateral cerebroventricle of either male or female rats, the neurochemical changes in various parts of the central nervous system, including the hypothalamus, were determined by high-performance liquid chromatography at various times after the injection (30, 60, 120 and 240 min). The concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) and 3-methoxy-4-hydroxy-phenylethyleneglycol (MHPG), two major metabolites of dopamine and norepinephrine, respectively, in discrete brain regions were used as indices for catecholaminergic neuron activity. Plasma corticosterone levels increased significantly after all doses of oCRH and at all time points studied. oCRH also exerted significant stimulatory effects on noradrenergic neuron terminals in the frontal cortex, and on dopaminergic neuron terminals in the nucleus accumbens, hypothalamic paraventricular and periventricular nuclei, and intermediate pituitary lobe. Dopaminergic neuron terminals in the median eminence and the neural lobe of the pituitary, however, were not affected. There was no major difference in the responses between male and female rats. We conclude that CRH has a differential effect on central catecholaminergic neurons.  相似文献   
54.
55.
Repletion of depleted cellular reduced glutathione (GSH) levels in oxidative stress and exposure to arylating agents is a strategy for the development of antidotes to chemical toxicity. The effect of GSH, reduced glutathione ethyl monoester (GSHEt), and reduced glutathione ethyl diester (GSHEt2) on the cytotoxicity of hydrogen peroxide, 1-chloro-2,4-dinitrobenzene (CDNB), and menadione to P388D1 macrophages in vitro was investigated. The median toxic concentration TC50 values of the toxicants were hydrogen peroxide 24 ± 2 mM (N = 19), CDNB 63 ± 6 μM (N = 18), and menadione 30 ± 4 μM (N = 22). Reduced glutathione, GSHEt, and GSHEt2 were poor antidotes to hydrogen peroxide toxicity. Indeed, the observed antidote effects were attributed to the nonenzymatic reaction of the GSH derivatives with hydrogen peroxide in the extracellular medium. Reduced glutathione ethyl diester was a more potent antidote of CDNB- and menadione-mediated toxicity than GSHEt and GSH. For cell incubations with the approximate median toxic concentration TC50 values of hydrogen peroxide, CDNB, and menadione, the respective median effective antidote concentration EC50 values were GSHEt 23.8 ± 4.1 mM (N = 9), 3.6 ± 0.6 mM (N = 11), and 226 ± 93 μM (N = 12); and GSHEt2 20.4 ± 1.9 mM (N = 6), 603 ± 2 μM (N = 9), and 7.6 ± 2.3 μM (N = 12). Reduced glutathione ethyl diester was a potent antidote to CDNB- and menadione-induced toxicities but not to hydrogen peroxide-induced toxicity under acute intoxication conditions. © 1996 John Wiley & Sons, Inc.  相似文献   
56.
The effects of stress produced by noxious cutaneous stimulation on the concentration of 18 amino acids in the hemolymph of Aplysia californica were examined. The concentration of alanine and glutamate increased in response to stress and remained elevated for at least 6 h. The total amino acid concentration in the hemolymph did not change significantly in response to stress. It is concluded that stress evokes an increase in circulating alanine and glutamate levels. These factors may then act in a paracrine, endocrine, or neuroendocrine manner to modify stress-associated behaviors.Abbreviations AA amino acids(s) - bw body weight - SEM standard error of the mean - SW sea water  相似文献   
57.
Abstract: Glucocorticoids (GCs) are secreted during stress and can damage the hippocampus over the course of aging and impair the capacity of hippocampal neurons to survive excitotoxic insults. Using microdialysis, we have previously observed that GCs augment the extracellular accumulation of glutamate and aspartate in the hippocampus following kainic acid-induced seizures. In that study, adrenalectomized rats maintained on minimal GC concentrations were compared with those exposed to GCs elevated to near-pharmacological levels. We wished to gain insight into the physiological relevance of these observations. Thus, we have examined the effects of GCs over the normal physiological range on glutamate and aspartate profiles; this was done by implanting adrenalectomized rats with GC-secreting pellets, which produce stable and controllable circulating GC concentrations. We observe that incremental increases in GC concentrations cause incremental increases in glutamate accumulation before the kainic acid insult, as well as in the magnitude of the glutamate response to kainic acid. Elevating GC concentrations from the circadian trough to peak doubled cumulative glutamate accumulation, whereas a rise into the stress range caused a fourfold increase in accumulation. Similar, although smaller, effects also occurred with aspartate accumulation (as well as with taurine but not glutamine accumulation). These data show that the highly elevated GC concentrations that accompany neurological insults such as seizure or hypoxia-ischemia will greatly exacerbate the glutamate accumulation at that time. Furthermore, stress levels of GCs augmented glutamate accumulation even in the absence of an excitotoxic insult, perhaps explaining how sustained stress itself damages the hippocampus. Finally, even the moderately ?levated basal GC concentrations that typically occur in aged rats augmented glutamate accumulation, perhaps explaining how GCs damage the hippocampus over the course of normal aging.  相似文献   
58.
Cell Size and the Heat-Shock Response in Rat Brain   总被引:1,自引:1,他引:0  
Abstract: The expression of mRNAs encoding two members of the heat-shock protein 70 family, the constitutively-expressed heat-shock cognate (hsc70) mRNA and the strictly heat-inducible (hsp70) mRNA, was quantitated in cerebellar and hippocampal cells of rats 3 h after amphetamine-induced or heat-induced hyperthermia. Intracellular heat-shock mRNA levels in specific cell types were compared with those of total polyadenylic acid [poly(A)] mRNA or 18S rRNA in the same cell type. Levels of poly(A) mRNAs, 18S rRNAs, and hsc70 mRNAs were highest in large neurons and lowest in glia. hsp70 mRNAs were also present at highest levels in large neurons, suggesting that hsp70 mRNAs accumulated as rapidly in these cell types as they did in small neurons and glia. However, compared with levels of intracellular poly(A) mRNAs or levels of rRNAs, large neurons contained two- to 12-fold lower levels of hsp70 mRNAs than neurons of intermediate size and five- to 30-fold lower levels than glia. These results suggest that hsp70 mRNAs accumulated as rapidly in large neurons as in small neurons and glia, but that the large size of these neurons precluded intracellular hsp70 mRNA concentrations increasing as quickly. The susceptibility of large neurons to stress-induced cell death could be due, in part, to their inability to synthesize rapidly hsp70 in sufficient amounts to protect these cells from the initial molecular consequences of stress.  相似文献   
59.
We have investigated the relationship between phenotypic and genetic correlations among a large number of quantitative traits (36) in three different environments in order to determine their degree of disparity and whether phenotypic correlations could be substituted for their genetic counterparts whatever the environment. We also studied the influence of the environment on genetic and phenotypic correlations. Twenty accessions (full-sib families) ofMedicago luPulina were grown in three environments. In two of these two levels of environmental stress were generated by harvesting plants at flowering and by growing plants in competition with barley, respectively. A third environment, with no treatment, was used as a control with no stress. Average values of pod and shoot weight indicate that competition induces the highest level of stress. The genetic and phenotypic correlations among the 36 traits were compared. Significant phenotypic correlations were obtained easily, while there was no genetic variation for 1 or the 2 characters being correlated. The large positive correlation between the genetic and phenotypic correlation matrices indicated a good proportionality between genetic and phenotypic correlations matrices but not their similarity. In a given environment, when only those traits with a significant genetic variance were taken into account, there were still differences between genetic and phenotypic correlations, even when levels of significance for phenotypic correlations were lowered. Consequently, it is dangerous to substitute phenotypic correlations for genetic correlations. The number of traits that showed genetic variability increased with increasing environmental stress, consequently the number of significant genetic correlations also increased with increasing environmental stress. In contrast, the number of significant phenotypic correlations was not influnced by the environment. The structures of both phenotypic and genetic matrices, however, depended on the environment, and not in the same way for both matrices.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号