首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2881篇
  免费   189篇
  国内免费   54篇
  3124篇
  2024年   11篇
  2023年   42篇
  2022年   60篇
  2021年   65篇
  2020年   53篇
  2019年   41篇
  2018年   43篇
  2017年   42篇
  2016年   47篇
  2015年   97篇
  2014年   283篇
  2013年   267篇
  2012年   234篇
  2011年   283篇
  2010年   181篇
  2009年   153篇
  2008年   157篇
  2007年   132篇
  2006年   113篇
  2005年   114篇
  2004年   115篇
  2003年   93篇
  2002年   72篇
  2001年   34篇
  2000年   39篇
  1999年   23篇
  1998年   39篇
  1997年   24篇
  1996年   25篇
  1995年   37篇
  1994年   32篇
  1993年   12篇
  1992年   28篇
  1991年   15篇
  1990年   17篇
  1989年   12篇
  1988年   11篇
  1987年   10篇
  1986年   9篇
  1985年   12篇
  1984年   9篇
  1983年   8篇
  1982年   6篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1969年   1篇
  1964年   1篇
排序方式: 共有3124条查询结果,搜索用时 14 毫秒
101.
Accumulating evidence indicates that dysfunction of mitochondria is a common feature of Parkinson disease. Functional loss of a familial Parkinson disease-linked gene, BRPK/PINK1 (PINK1), results in deterioration of mitochondrial functions and eventual neuronal cell death. A mitochondrial chaperone protein has been shown to be a substrate of PINK1 kinase activity. In this study, we demonstrated that PINK1 has another action point in the cytoplasm. Phosphorylation of Akt at Ser-473 was enhanced by overexpression of PINK1, and the Akt activation was crucial for protection of SH-SY5Y cells from various cytotoxic agents, including oxidative stress. Enhanced Akt phosphorylation was not due to activation of phosphatidylinositol 3-kinase but due to activation of mammalian target of rapamycin complex 2 (mTORC2) by PINK1. Rictor, a specific component of mTORC2, was phosphorylated by overexpression of PINK1. Furthermore, overexpression of PINK1 enhanced cell motility. These results indicate that PINK1 exerts its cytoprotective function not only in mitochondria but also in the cytoplasm through activation of mTORC2.  相似文献   
102.
目的:观察地佐辛复合右美托咪定用于高血压患者乳腺癌手术全麻诱导的临床效果。方法:选择我院择期行乳腺癌改良根治术的患者90例,随机分为Ⅰ、Ⅱ、Ⅲ组,n=30。Ⅰ组给予芬太尼2~5μg/kg,Ⅱ组给予地佐辛0.2~0.3 mg/kg,Ⅲ组持续输注右美托咪定1μg/(kg·h)10 min后给予地佐辛0.2~0.3 mg/kg,三组患者均常规行全麻诱导。记录围插管期的平均动脉压(MAP)、心率(HR),并测定T0、T1、T2、T3时血浆肾上腺素(E)和去甲肾上腺素(NE)的浓度,同时记录患者拔管即刻、拔管后1 min的MAP、HR及术中给予的心血管活性药物的总剂量等情况。结果:Ⅰ组患者MAP、HR在T1、T2、T5时刻的数值及围插管期血浆肾上腺素(E)和去甲肾上腺素(NE)浓度变化分别与其前一时点相比,差异有统计学意义(P0.05)。Ⅱ、Ⅲ两组围插管期血浆肾上腺素(E)和去甲肾上腺素(NE)浓度虽然都有波动,但与前一时点比较差异均无统计学意义(P0.05)。结论:地佐辛复合右美托咪定用于高血压患者乳腺癌手术全麻诱导不仅可以有效抑制气管插管应激反应,维持术中血流动力学稳定,降低患者术后对疼痛的敏感性,而且对患者术后意识、呼吸等恢复没有影响。  相似文献   
103.
104.
To understand and eventually predict the effects of changing redox conditions and oxidant levels on the physiology of an organism, it is essential to gain knowledge about its redoxome: the proteins whose activities are controlled by the oxidation status of their cysteine thiols. Here, we applied the quantitative redox proteomic method OxICAT to Saccharomyces cerevisiae and determined the in vivo thiol oxidation status of almost 300 different yeast proteins distributed among various cellular compartments. We found that a substantial number of cytosolic and mitochondrial proteins are partially oxidized during exponential growth. Our results suggest that prevailing redox conditions constantly control central cellular pathways by fine-tuning oxidation status and hence activity of these proteins. Treatment with sublethal H(2)O(2) concentrations caused a subset of 41 proteins to undergo substantial thiol modifications, thereby affecting a variety of different cellular pathways, many of which are directly or indirectly involved in increasing oxidative stress resistance. Classification of the identified protein thiols according to their steady-state oxidation levels and sensitivity to peroxide treatment revealed that redox sensitivity of protein thiols does not predict peroxide sensitivity. Our studies provide experimental evidence that the ability of protein thiols to react to changing peroxide levels is likely governed by both thermodynamic and kinetic parameters, making predicting thiol modifications challenging and de novo identification of peroxide sensitive protein thiols indispensable.  相似文献   
105.
Abstract Three unlinked genes, TDH1, TDH2 and TDH3 , encode the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (triose-phosphate dehydrogenase; TDK) in the yeast Saccharomyces cerevisiae . We demonstrate that the synthesis of the three encoded TDK polypeptides (TDHa, TDHb and TDHc, respectively) is not co-ordinately regulated and that TDHa is only synthesised as cells enter stationary phase, due to glucose starvation, or in heat-shocked cells. Furthermore, the synthesis of TDHb, but not TDHc, is strongly repressed by a heat shock. Hence, the TDHa enzyme may play a cellular role, distinct from glycolysis, that is required by stressed cells.  相似文献   
106.
This work analyzes the effect of calorie restriction on the 24 h variation of pituitary-testicular function in young male Wistar rats by measuring the circulating levels of prolactin, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. Control animals were provided an equilibrium calorie diet and the experimental animals a calorie-restriction diet equivalent to 66% of food restriction for four weeks starting on day 35 of life. Different groups of control and experimental rats were killed at 6 h intervals around the clock, beginning 1 h after light on (HALO). Compared to the control animals, the mean secretion of prolactin was augmented and that of LH and testosterone decreased in calorie-restricted rats, whereas FSH release remained unchanged. Significant changes in the 24 h secretory pattern of circulating prolactin, LH, and testosterone occurred in the calorie-restricted rats. These include the appearance of a second maximum of plasma prolactin at 21 HALO, blunting of the LH peak seen at 13 HALO, and phase-shift of the testosterone peak from 13 HALO in controls to 17 HALO in calorie-restricted rats. The significant positive correlation between individual LH and testosterone levels found in controls was no longer observed in calorie-restricted rats. Availability of nutrients presumably affects the mechanisms that modulate the circadian variation of the pituitary-gonadal axis in growing male rats.  相似文献   
107.
Streptococcus pyogenes is commonly found on pharynx, mouth and rarely on skin, lower gastrointestinal tract. It is a potential pathogen causing tonsillitis, pneumonia, endocarditis. The present study was undertaken to study the effects of low shear modeled microgravity on growth, morphology, antibiotic resistance, cross-stress resistance to various stresses and alteration in gene expression of S. pyogenes. The growth analysis performed using UV–Visible spectroscopy indicated decrease in growth of S. pyogenes under low shear modeled microgravity. Morphological analysis by Bio-transmission electron microscopy (TEM), Bio-scanning electron microscopy (SEM) did not reveal much difference between normal and low shear modeled microgravity grown S. pyogenes. The sensitivity of S. pyogenes to antibiotics ampicillin, penicillin, streptomycin, kanamycin, hygromycin, rifampicin indicates that the bacterium is resistant to hygromycin. Further S. pyogenes cultured under low shear modeled microgravity was found to be more sensitive to ampicillin and rifampicin as compared with normal gravity grown S. pyogenes. The bacteria were tested for the acid, osmotic, temperature and oxidative cross stress resistances. The gene expression of S. pyogenes under low shear modeled microgravity analyzed by microarray revealed upregulation of 26 genes and down regulation of 22 genes by a fold change of 1.5.  相似文献   
108.
细菌小RNA是一类长度在50~500个核苷酸之间的不具有编码蛋白质功能,但具有转录后调控作用的RNA,在细菌中参与调控细菌多种生理和病理活动,如调节细菌代谢和毒力作用等过程。近年来,在结核分枝杆菌已经鉴定出近200种小RNA,并证明这些小RNA参与结核分枝杆菌的生理和病理过程。本文对结核分枝杆菌小RNA在细菌生长繁殖、毒力因子调控、细菌耐药和巨噬细胞内应激环境的适应等方面的作用进行综述。  相似文献   
109.
The RNA-binding proteins TDP-43 and Fused in Sarcoma (FUS) play central roles in neurodegeneration associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Both proteins are components of messenger ribonucleoprotein (mRNP) granules and show cytoplasmic mislocalization in affected tissues. Recently, ataxin-2 was identified as a potent modifier of TDP-43 toxicity in an RNA-dependent manner. This study investigated to clarify how ataxin-2 modifies the TDP-43 and FUS pathological pathway. The expression of cytoplasmic TDP-43, the 35-kDa C-terminal fragment (TDP-p35f), and mutant FUS recruited ataxin-2 to mRNP granules, whereas increased ataxin-2 inhibited the mRNP granule formation of the 35-kDa C-terminal fragment and mutant FUS. A subcellular compartment analysis showed that the overexpressed ataxin-2 increased the cytoplasmic concentrations of both proteins, whereas it decreased their nuclear distributions. These data indicate that increased ataxin-2 impairs the assembly of TDP-43 and FUS into mRNP granules, leading to an aberrant distribution of RNA-binding proteins. Consequently, these sequences may exacerbate the impairment of the RNA-quality control system mediated by amyotrophic lateral sclerosis/frontotemporal lobar degeneration-associated RNA-binding proteins, which forms the core of the degenerative cascade.  相似文献   
110.
Cell cycle checkpoints ensure that proliferation occurs only under permissive conditions, but their role in linking nutrient availability to cell division is incompletely understood. Protein folding within the endoplasmic reticulum (ER) is exquisitely sensitive to energy supply and amino acid sources because deficiencies impair luminal protein folding and consequently trigger ER stress signaling. Following ER stress, many cell types arrest within the G1 phase, although recent studies have identified a novel ER stress G2 checkpoint. Here, we report that ER stress affects cell cycle progression via two classes of signal: an early inhibition of protein synthesis leading to G2 delay involving CHK1 and a later induction of G1 arrest associated both with the induction of p53 target genes and loss of cyclin D1. We show that substitution of p53/47 for p53 impairs the ER stress G1 checkpoint, attenuates the recovery of protein translation, and impairs induction of NOXA, a mediator of cell death. We propose that cell cycle regulation in response to ER stress comprises redundant pathways invoked sequentially first to impair G2 progression prior to ultimate G1 arrest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号