首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   4篇
  国内免费   4篇
  2022年   4篇
  2021年   5篇
  2020年   6篇
  2019年   6篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   10篇
  2013年   13篇
  2012年   17篇
  2011年   6篇
  2010年   5篇
  2009年   13篇
  2008年   9篇
  2007年   14篇
  2006年   15篇
  2005年   9篇
  2004年   7篇
  2003年   12篇
  2002年   8篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
131.
目的:研究秋茄枝乙醇提取物(EEK)对链脲佐菌素(STZ)诱导的2型糖尿病(T2DM)大鼠肝脏和胰腺组织病理结构的影响。方法:以高脂饲料喂养联合STZ建立T2DM大鼠模型。大鼠分为为正常对照组、T2DM模型组、二甲双胍组、EEK低、中、高剂量组。大鼠给药4周后处死,取肝脏和胰腺进行组织病理学检查。结果:随着EEK剂量的增加,大鼠肝脏和胰岛组织的病理损伤逐步减轻。结论:EEK有助于修复STZ诱导的T2DM大鼠受损的肝脏和胰岛组织。  相似文献   
132.
糖尿病正呈快速上升趋势,而糖尿病的病因、发病机制尚未完全阐明,糖尿病及其并发症的预防和治疗仍不完善。因此,在糖尿病研究领域优化糖尿病实验动物模型的研究,寻找更接近人类糖尿病自然发病过程的动物模型,对于深入研究糖尿病具有重要的科学意义。  相似文献   
133.
Molecular target structures in alloxan-induced diabetes in mice   总被引:4,自引:0,他引:4  
Type 1 diabetes results from irreversible damage of insulin-producing beta-cells. In laboratory animals, diabetes can be induced with alloxan (ALX), a 2,4,5,6-tetraoxopyrimidine. ALX is a potent generator of reactive oxygen species (ROS), which can mediate beta-cell toxicity. However, the initial lesions on essential beta-cell structures are not known. In this study, we report that the glucose transporter 2 (GLUT2) and glucokinase (GK) are target molecules for ALX. Ex vivo, a gradual decrement of both GLUT2 and GK mRNA expression was found in islets isolated from ALX-treated C57BL/6 mice. This reduction was more pronounced for GLUT2 than for GK. The mRNA expression of beta-actin was also slightly affected with time after ALX exposure, the proinsulin mRNA, however, remained unaffected as well as the pancreatic total insulin content. Pretreatment with D-glucose (D-G) protected the mRNA expression of GLUT2 and GK against ALX toxicity and prevented diabetes. Yet, in these euglycemic mice, an impaired oral glucose tolerance persisted. Pretreatment with 5-thio-D-glucose (5-T-G) failed to prevent ALX diabetes, administration of zinc sulfate (Zn(2+))-enriched drinking water, however, reduced ALX-induced hyperglycemia. In conclusion, ALX exerted differential toxicity on beta-cell structures similar to in vitro results reported from this laboratory. Furthermore, the present results differ from those reported for the diabetogen streptozotocin (STZ). Injections of multiple low doses (MLD) of STZ reduced GLUT2 expression only, but failed to affect expression of GK and proinsulin as well as beta-actin as internal control. MLD-STZ diabetes was prevented by pretreatment with both D-G and 5-T-G and administration of Zn(2+)-enriched drinking water. Apparently, ALX and MLD-STZ exert diabetogenicity by different pathways requiring different interventional schedules for prevention.  相似文献   
134.
The aim of the present study was to investigate the effects of treatment with antioxidant stobadine (ST) on the activities of enzymes related with pentose phosphate pathway and glutathione-dependent metabolism and the other markers of oxidative stress in brain and peripheral organs of diabetic rats, and to compare the effects of ST treatment alone with the effects of treatments with another antioxidant vitamin E and ST plus vitamin E. Rats were made diabetic by the injection of streptozotocin (STZ; 55 mg/kg IP), and, 2 days later, some control and diabetic rats were left untreated or treated with ST (24.7 mg/kg/day, orally), vitamin E (400–500 U/kg/day, orally), or both substances together. In the brain, although 6-phosphogluconate dehydrogenase activity (6-PGD) did not change, glucose-6-phosphate dehydrogenase activity (G-6PD) was markedly increased in diabetic rats compared with controls; only combined treatment with ST and vitamin E produced a partial prevention on this alteration. The aorta G-6PD and 6-PGD of diabetic rats were 52% and 36% of control values, respectively. Neither single treatments with each antioxidant nor their combination altered the G-6PD and 6-PGD in aorta of diabetic rats. Glutathione peroxidase (GSHPx) activity was increased by STZ-diabetes in brain, heart, and kidney. In diabetic brain, vitamin E alone or combination with ST kept GSHPx at normal levels. Diabetes-induced stimulation in GSHPx did not decrease in response to the treatment with vitamin E in heart and kidney, but was greatly prevented by ST alone. The activity of glutathione reductase (GR) was decreased in brain and heart of diabetic rats. The treatment with each antioxidant or with a combination of both agents completely prevented this deficiency and resulted in further activation of GR in diabetic tissues. Glutathione S-transferase (GST) activity did not significantly change in diabetic brain and aorta. GST was stimulated by all treatment protocols in the brain of diabetic rats and was depressed in aorta of control rats. Catalase (CAT) was activated in diabetic heart but depressed in diabetic kidney. Diabetes-induced abnormalities in CAT activity did not respond to vitamin E alone in heart, was moderately ameliorated by the treatment with this vitamin in kidney, and was completely prevented by ST alone in both tissues. Superoxide dismutase (SOD) activity of brain and heart was unchanged by the diabetes but inhibited in diabetic kidney after the treatment ST alone or ST plus vitamin E. The lipid peroxidation (MDA) was increased in diabetic brain and heart. ST or vitamin E alone partly prevented diabetes-induced increase in MDA in brain and heart; however, antioxidant combination achieved a completely amelioration in MDA of these tissues of diabetic rats. Kidney MDA levels were similar in control and untreated diabetic animals. ST and vitamin E treatments, when applied separately or together, significantly reduced kidney MDA in both control and diabetic rats; and the combined effect of antioxidants was greater than that of each alone. These results are consistent with the degenerative role of hyperglycemia on cellular reducing equivalent homeostasis and antioxidant defense, and provide further evidence that pharmacological intervention of different antioxidants may have significant implications in the prevention of the prooxidant feature of diabetes and protects redox status of the cells.  相似文献   
135.
Streptozotocin (STZ) has long been used to induce experimental diabetes mellitus to study diabetic complications such as diabetic cardiomyopathy. However, direct impact of STZ on cardiac function is unknown. This study was designed to evaluate the cardiac contractile effect of STZ in isolated adult rat ventricular myocytes. Contractile properties were assessed with an IonOptix MyoCam system including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90), and maximal velocities of shortening/relengthening (+/-dL/dt). Intracellular Ca2+ handling was evaluated with the fluorescent dye fura-2. Acute exposure of STZ (10(-9)-10(-5) M) depressed PS, prolonged TR90, and decreased electrically stimulated intracellular Ca2+ rise in a concentration-dependent manner. TPS,+/-dL/dt, resting intracellular Ca2+ level, and intracellular Ca2+ clearing rate were unaffected. The STZ-induced mechanical alterations were alleviated by the antioxidant vitamin C (100 microM) and the p38 MAP kinase inhibitor SB203580 (1 microM). 2', 7'-Dichlorofluorescein diacetate staining revealed enhanced production of reactive oxygen species following STZ treatment, which was prevented by either vitamin C or SB203580. Collectively, our data provided convincing evidence that the tool drug for experimental diabetes STZ may itself cause deleterious cardiac contractile dysfunction via an oxidative stress and p38 MAP kinase-dependent mechanism. Thus, caution should be taken when assessing diabetic heart complications using STZ-induced diabetic models.  相似文献   
136.
Oxidative stress and impaired bioactivity of vascular nitric oxide (NO) play an important role in the pathogenesis of macro- as well as microangiopathic complications in diabetes mellitus. To determine the cause of this impaired bioactivity, we tested the effect of long-term hyperglycemia and antioxidative treatment on tissue-specific endothelial (e)NOS- and inducible (i)NOS-expression and the main target of NO action, cGMP, in diabetic rats. After 4 weeks of hyperglycemia, eNOS-mRNA expression was significantly down-regulated in all tissues tested. In contrast, iNOS-mRNA was significantly up-regulated and tissue generation of cGMP significantly increased. Treatment with alpha-lipoicacid reversed changes of NOS-isoform expression as well as cGMP-concentration without changing blood glucose levels. In addition, oxidative stress significantly decreased in diabetic rats treated with alpha-lipoicacid. Together, diabetes regulates NOS-isoforms differentially by down-regulating eNOS and up-regulating iNOS. In addition, our data suggest that the cause of impaired endothelial vasodilatation in experimental diabetes is not degradation or inactivation of NO. On the contrary, these results support the concept of decreased reactivity of the vascular smooth muscle to NO or increased NO activity as a possible vascular damaging agent, e.g., by inducing apoptosis in vascular cells. Furthermore, our data show that antioxidative treatment is capable of reversing changes in the NO-cGMP system and may therefore be an important therapeutic option for preventing vascular damage in diabetes mellitus.  相似文献   
137.
The effect of chronic hyperglycemia and hyperlipidemia induced by streptozotocin (SZ) on the expression of P450 in the liver of APA hamsters was studied in this experiment. No effect on the total activity of P450 was seen in SZ-induced diabetic hamsters throughout the experimental period. At 1 and 6 months after SZ-injection, the levels of CYP1A, 2C6, and 3A of SZ-injected hamsters were much lower than those of age-matched control hamsters. CYP2B expression tended to decrease and CYP2E1 and 4A expression tended to increase in SZ-injected hamsters, although the results were not significant. At 3 months after SZ-injection, however, no significant difference between SZ-injected and normal hamsters was seen in these P450 isozymes. On the other hand, CYP2C11 expression was slightly depressed in SZ1M and SZ6M, and almost equivalent to control hamsters in SZ3M. Immunohistochemistry by the use of each isozyme antibody revealed that SZ-induced diabetes affected the localization of CYP2C6, 3A, and 4A in the hepatic acinus. The expression of CYP2C6 and 3A was depressed mainly in the periportal region of the acinus, and CYP4A expression was induced mainly in the perivenous region by SZ-induced diabetes. On the other hand, the expression pattern of CYP1A, 2B, 2C11, and 2E1 were not affected. These results demonstrate that the effects of SZ-induced diabetes on hepatic P450 differ for each isozyme in APA hamsters and also differ from those of other experimental diabetic animals, including golden hamsters.  相似文献   
138.
We have assessed the presence of VIP/PHI/secretin receptors in heart by: (1) testing the ability of the corresponding peptides to activate adenylate cyclase in cardiac membranes from rat, dog, Cynomolgus monkey and man, and (2) examining the ability of the same peptides to exert inotropic and chronotropic effects on heart preparations from rat and Cynomolgus monkey in vitro. Based on their affinity for natural peptides and synthetic analogs, two types of VIP/PHI/secretin receptors were characterized: the relatively nonspecific "secretin/VIP receptor" of rat heart (that is "secretin-preferring" only in that secretin was more efficient than VIP in stimulating adenylate cyclase), and the "VIP/PHI-preferring" receptor of man, monkey and dog heart. Four physiopathological situations affecting secretin/VIP receptors in rat heart were explored: In male rats from the Okamoto strain and the Lyon strain, two strains presenting spontaneous hypertension, heart membranes exhibited a markedly decreased response of adenylate cyclase to secretin/VIP, with lesser alterations in the responses to isoproterenol and glucagon. This impairment developed in parallel with the occurrence of hypertension and was reproduced in normotensive rats submitted to chronic isoproterenol treatment (but not in Goldblatt hypertensive rats). These findings are consistent with a hyperactivity of norepinephrine pathways in spontaneously hypertensive rats, leading to a reduced number of cardiac post-junctional secretin/VIP receptors bound to adenylate cyclase. Heart membranes from genetically obese (fa/fa) Zucker rats also exhibited severely decreased responses to secretin/VIP with lesser alterations in the responses to glucagon and isoproterenol. These anomalies were specific for the heart, and developed in concomitance with obesity. The first anomaly could not be corrected by severe food restriction. Secretin stimulation of heart adenylate cyclase was also selectively altered in streptozotocin-diabetic rats. Thus, two types of diabetic cardiomyopathy were characterized by a severe local alteration of secretin/VIP receptors coupled to adenylate cyclase. Hypothyroidism, provoked in rat by thyroidectomy or propylthiouracil treatment, again induced a marked decrease in secretin-stimulated cardiac adenylate cyclase activity. In rat papillary muscle electrically stimulated in vitro, secretin exerted a positive inotropic effect. This effect was reduced in obese (fa/fa) Zucker rats. In rat right atrium, secretin also exerted a positive chronotropic effects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
139.
The rate of accumulation of 3,4-dihydroxy-phenylalanine following decarboxylase inhibition and of homovanillic acid following probenecid treatment were significantly decreased in streptozotocin-diabetic rats. These changes were observed in both the striatum and limbic forebrain. The Bmax for [3H]spiroperidol receptor binding was significantly increased in both brain regions. All of these neurochemical changes were reversed by insulin replacement therapy. Whether these neurochemical changes are attributable to chronic hyperglycemia or some other aspect of the diabetic state is not known.  相似文献   
140.
Aims/hypothesis It is generally accepted that oxidative stress is responsible for etiology and complications of diabetes. During uncontrolled Type 1 diabetes, plasma leptin levels rapidly fall. However, it is not known whether diabetes-induced hypoleptinemia has any role in oxidative stress related to uncontrolled Type I diabetes. The present study was designed to examine the effects of leptin treatment on plasma lipid peroxidation and reduced glutathion of normal and streptozotocin(STZ)-induced diabetic rats. Methods Diabetes was induced by single injection of Streptozotocin (55 mg/kg bw). One week after induction of diabetes, rats began 5-day treatment protocol of leptin injections of (0.1 mg/kg bw i.p.) or same volume vehicle. At the end of the 5th day, rats were sacrificed by cardiac puncture under anesthesia and their plasma was taken for plasma leptin, malondialdehyde, and reduced glutathione measurements. Results Plasma leptin levels decreased in STZ-induced diabetic rats while plasma glucose, TBARS, and GSH levels increased. Plasma leptin levels were not affected with leptin treatment in both diabetic and non-diabetic rats. The elevation in plasma TBARS associated with STZ diabetes decreased with leptin treatment. Leptin also increased plasma GSH levels in diabetic rats. In non-diabetic rats, treatment with leptin did not change plasma TBARS and GSH levels. Conclusions/interpretations In conclusion, leptin treatment is able to attenuate lipid peroxidation in STZ-diabetic rats, in the onset of diabetes, by increasing the GSH levels without affecting hyperglycemia and hypoleptinemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号