首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1466篇
  免费   189篇
  国内免费   356篇
  2024年   10篇
  2023年   42篇
  2022年   42篇
  2021年   40篇
  2020年   56篇
  2019年   64篇
  2018年   68篇
  2017年   68篇
  2016年   75篇
  2015年   61篇
  2014年   74篇
  2013年   71篇
  2012年   64篇
  2011年   60篇
  2010年   60篇
  2009年   77篇
  2008年   103篇
  2007年   127篇
  2006年   81篇
  2005年   83篇
  2004年   98篇
  2003年   83篇
  2002年   73篇
  2001年   67篇
  2000年   53篇
  1999年   46篇
  1998年   51篇
  1997年   31篇
  1996年   25篇
  1995年   22篇
  1994年   11篇
  1993年   12篇
  1992年   12篇
  1991年   17篇
  1990年   16篇
  1989年   7篇
  1988年   10篇
  1987年   7篇
  1986年   7篇
  1985年   10篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1958年   1篇
排序方式: 共有2011条查询结果,搜索用时 31 毫秒
101.
The link between variation in species‐specific plant traits, larger scale patterns of productivity, and other ecosystem processes is an important focus for global change research. Understanding such linkages requires synthesis of evolutionary, biogeograpahic, and biogeochemical approaches to ecological research. Recent observations reveal several apparently paradoxical patterns across ecosystems. When compared with warmer low latitudes, ecosystems from cold northerly latitudes are described by (1) a greater temperature normalized instantaneous flux of CO2 and energy; and (2) similar annual values of gross primary production (GPP), and possibly net primary production. Recently, several authors attributed constancy in GPP to historical and abiotic factors. Here, we show that metabolic scaling theory can be used to provide an alternative ‘biotically driven’ hypothesis. The model provides a baseline for understanding how potentially adaptive variation in plant size and traits associated with metabolism and biomass production in differing biomes can influence whole‐ecosystem processes. The implication is that one cannot extrapolate leaf/lab/forest level functional responses to the globe without considering evolutionary and geographic variation in traits associated with metabolism. We test one key implication of this model – that directional and adaptive changes in metabolic and stoichiometric traits of autotrophs may mediate patterns of plant growth across broad temperature gradients. In support of our model, on average, mass‐corrected whole‐plant growth rates are not related to differences in growing season temperature or latitude. Further, we show how these changes in autotrophic physiology and nutrient content across gradients may have important implications for understanding: (i) the origin of paradoxical ecosystem behavior; (ii) the potential efficiency of whole‐ecosystem carbon dynamics as measured by the quotient of system capacities for respiration, R, and assimilation, A; and (iii) the origin of several ‘ecosystem constants’– attributes of ecological systems that apparently do not vary with temperature (and thus with latitude). Together, these results highlight the potential critical importance of community ecology and functional evolutionary/physiological ecology for understanding the role of the biosphere within the integrated earth system.  相似文献   
102.
In many systems, native communities are being replaced by novel exotic-dominated ones. We experimentally compared species diversity decline between nine-species grassland communities under field conditions to test whether diversity maintenance mechanisms differed between communities containing all exotic or all native species using a pool of 40 species. Aboveground biomass was greater in exotic than native plots, and this difference was larger in mixtures than in monocultures. Species diversity declined more in exotic than native communities and declines were explained by different mechanisms. In exotic communities, overyielding species had high biomass in monoculture and diversity declined linearly as this selection effect increased. In native communities, however, overyielding species had low biomass in monoculture and there was no relationship between the selection effect and diversity decline. This suggests that, for this system, yielding behaviour is fundamentally different between presumably co-evolved natives and coevolutionarily naive exotic species, and that native-exotic status is important to consider.  相似文献   
103.
Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field‐grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed‐greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGRl) and higher LA than non‐pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.  相似文献   
104.
ABSTRACT Mist nets deployed in a standard ground‐level fashion capture birds approximately 0.5–2.6 m above the ground. In habitats where the vegetation extends above this height, standard mist net deployment may inadequately sample the targeted avian community and age‐ and sex‐classes within species. Such sampling biases may raise questions regarding studies based on data from mist‐net captures. To determine if birds were equally likely to be captured by mist nets at different heights, we constructed a series of paired ground‐level and elevated mist nets (hereafter “net rigs”) at a research station in western New York State. Net rigs were operated during 14 migration seasons from 2000 to 2006 (spring and fall each year), and 19,735 birds of 118 species were captured. Capture rates were significantly higher in ground‐level nets, but 12 species were only captured in elevated nets. Of 44 species with at least 50 captures, 25 species were more likely to be captured in the ground‐level nets and two species in the elevated nets. For four of 18 species, more birds were captured in the elevated nets during fall migration than during spring migration. We conclude that standard ground‐level net placement was more efficient in capturing birds in the secondary growth habitats that we sampled. However, ground‐level nets may not adequately sample the entire targeted community or all age‐ or sex‐classes within species.  相似文献   
105.
植物光合生理生态特性是退化植物群落恢复、重建植物种选择的重要依据。为研究不同红树植物光合生理生态特性,该研究于2021年旱季的4—5月、雨季的7—9月利用LI-6400光合仪,测定红树植物秋茄和海莲的光合生理参数和主要生态因子,并采用通径分析方法分析主要生态因子对净光合速率的影响。结果表明:(1)秋茄旱季净光合速率日均值(8.43μmol-2·s-1)略低于雨季(8.67μmol-2·s-1),差异不显著;海莲旱季净光合速率日均值(7.03μmol-2·s-1)显著低于雨季(9.41μmol-2·s-1);旱季秋茄净光合速率日均值显著高于海莲,而雨季秋茄净光合速率日均值显著低于海莲。(2)旱季、雨季秋茄蒸腾速率、气孔导度、胞间CO2浓度等光合生理因子日均值变化幅度小于海莲,水分利用效率也低于海莲。(3)旱季、雨季两种红树植物均存在“光合午休”现象。旱季,秋茄属于非气孔限制,而海莲属于气孔限制...  相似文献   
106.
The influence of forest stand age in a Picea sitchensis plantation on (1) soil fluxes of three greenhouse gases (GHGs – CO2, CH4 and N2O) and (2) overall net ecosystem global warming potential (GWP), was investigated in a 2‐year study. The objective was to isolate the effect of forest stand age on soil edaphic characteristics (temperature, water table and volumetric moisture) and the consequent influence of these characteristics on the GHG fluxes. Fluxes were measured in a chronosequence in Harwood, England, with sites comprising 30‐ and 20‐year‐old second rotation forest and a site clearfelled (CF) some 18 months before measurement. Adjoining unforested grassland (UN) acted as a control. Comparisons were made between flux data, soil temperature and moisture data and, at the 30‐year‐old and CF sites, eddy covariance data for net ecosystem carbon (C) exchange (NEE). The main findings were: firstly, integrated CO2 efflux was the dominant influence on the GHG budget, contributing 93–94% of the total GHG flux across the chronosequence compared with 6–7% from CH4 and N2O combined. Secondly, there were clear links between the trends in edaphic factors as the forest matured, or after clearfelling, and the emission of GHGs. In the chronosequence sites, annual fluxes of CO2 were lower at the 20‐year‐old (20y) site than at the 30‐year‐old (30y) and CF sites, with soil temperature the dominant control. CH4 efflux was highest at the CF site, with peak flux 491±54.5 μg m−2 h−1 and maximum annual flux 18.0±1.1 kg CH4 ha−1 yr−1. No consistent uptake of CH4 was noted at any site. A linear relationship was found between log CH4 flux and the closeness of the water table to the soil surface across all sites. N2O efflux was highest in the 30y site, reaching 108±38.3 μg N2O‐N m−2 h−1 (171 μg N2O m−2 h−1) in midsummer and a maximum annual flux of 4.7±1.2 kg N2O ha−1 yr−1 in 2001. Automatic chamber data showed a positive exponential relationship between N2O flux and soil temperature at this site. The relationship between N2O emission and soil volumetric moisture indicated an optimum moisture content for N2O flux of 40–50% by volume. The relationship between C : N ratio data and integrated N2O flux was consistent with a pattern previously noted across temperate and boreal forest soils.  相似文献   
107.
Net ecosystem productivity (NEP) was continuously measured using the eddy covariance (EC) technique from 2003 to 2005 at three forest sites of ChinaFLUX. The forests include Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical coniferous plantation (QYZ), and Dinghushan subtropical evergreen broad‐leaved forest (DHS). They span wide ranges of temperature and precipitation and are influenced by the eastern Asian monsoon climate to varying extent. In this study, we estimated ecosystem respiration (RE) and gross ecosystem productivity (GEP). Comparison of ecosystem carbon exchange among the three forests shows that RE was mainly determined by temperature, with the forest at CBS exhibiting the highest temperature sensitivity among the three ecosystems. The RE was highly dependent on GEP across the three forests, and the ratio of RE to GEP decreased along the North–South Transect of Eastern China (NSTEC) (i.e. from the CBS to the DHS), with an average of 0.77 ± 0.06. Daily GEP was mainly influenced by temperature at CBS, whereas photosynthetic photon flux density was the dominant factor affecting the daily GEP at both QYZ and DHS. Temperature mainly determined the pattern of the interannual variations of ecosystem carbon exchange at CBS. However, water availability primarily controlled the interannual variations of ecosystem carbon exchange at QYZ. At DHS, NEP attained the highest values at the beginning of the dry seasons (autumn) rather than the rainy seasons (summer), probably because insufficient radiation and frequent fog during the rainy seasons hindered canopy photosynthesis. All the three forest ecosystems acted as a carbon sink from 2003 to 2005. The annual average values of NEP at CBS, QYZ, and DHS were 259 ± 19, 354 ± 34, and 434 ± 66 g C m−2 yr−1, respectively. The slope of NEP that decreased with increasing latitude along the NSTEC was markedly different from that observed on the forest transect in the European continent. Long‐term flux measurements over more forest ecosystems along the NSTEC will further help verify such a difference between the European forest transect and the NSTEC and provide insights into the responses of ecosystem carbon exchange to climate change in China.  相似文献   
108.
The biomass and productivity of Schima superba-Castanopsis carlesii forests in Tiantong, Zhejiang Province, were determined using overlapping quadrants and stem analyses. The total community biomass was (225.3±30.1) t hm−2, of which the aboveground parts accounted for 72.0% and the underground parts accounted for 28.0%. About 87.2% of biomass existed in the tree layer. The resprouting biomass was small, of which over 95.0% occurred in the shrub layer. The productivity of the aboveground parts of the community was (386.8±98.9) g m−2a−1, in which more than 96.0% was present at the tree level. The trunk’s contribution to productivity was the greatest, while that of leaves was the smallest. In China, the community biomass of subtropical evergreen broadleaved forests differs significantly with the age of the forest. The community biomass of the 52-year-old S. superba-C. carlesii forests in this study was lower than the average biomass of subtropical evergreen broadleaved forests in China, and was lower than the biomass of other subtropical evergreen broadleaved forests elsewhere in the world. Moreover, its productivity was lower than the model estimate, indicating that without disturbance, this community has great developmental potential in terms of community biomass and productivity.  相似文献   
109.
Simultaneous measurements of net ecosystem CO2 exchange (NEE) were made in a Florida scrub‐oak ecosystem in August 1997 and then every month between April 2000 to July 2001, using open top chambers (NEEO) and eddy covariance (NEEE). This study provided a cross validation of these two different techniques for measuring NEE. Unique characteristics of the comparison were that the measurements were made simultaneously, in the same stand, with large replicated chambers enclosing a representative portion of the ecosystem (75 m2, compared to approximately 1–2 ha measured by the eddy covariance system). The value of the comparison was greatest at night, when the microclimate was minimally affected by the chambers. For six of the 12 measurement periods, night NEEO was not significantly different to night NEEE, and for the other periods the maximum difference was 1.1 µ mol m ? 2s ? 1, with an average of 0.72 ± 0.09 µ mol m ? 2s ? 1. The comparison was more difficult during the photoperiod, because of differences between the microclimate inside and outside the chambers. During the photoperiod, air temperature (Tair) and air vapour pressure deficits (VPD) became progressively higher inside the chambers until mid‐afternoon. In the morning NEEO was higher than NEEE by about 26%, consistent with increased temperature inside the chambers. Over the mid‐day period and the afternoon, NEEO was 8% higher that NEEE, regardless of the large differences in microclimate. This study demonstrates both the uses and difficulties associated with attempting to cross validate NEE measurements made in chambers and using eddy covariance. The exercise was most useful at night when the chamber had a minimal effect on microclimate, and when the measurement of NEE is most difficult.  相似文献   
110.
In field measurement programmes, stratified sampling can optimize sampling efficiency, but stratification is often undertaken subjectively, and is frequently based on a priori classification schemes such as those used for vegetation maps. In order to avoid the problems associated with a priori subjective schemes, we explore here an objective procedure, Regression Tree Analysis (RTA). RTA has previously been used in local-scale studies, but here we apply it to a very large study domain, namely the entire humid tropical zone of South America. The aim of the study was to develop an optimal sampling design in preparation for the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). Co-registered spatially continuous fields of rainfall, temperature, photosynthetically active radiation (PAR), the normalized difference index (NDVI), an index of surface moisture, and other independent variables were used to predict three dependent variables, annual net radiation (Rn), latent heat (LE) and net primary production (NPP). Rather than simply dividing the study area based on differing levels of the three dependent variables, empirical models were developed using RTA to indicate how the relationships between these and possible forcing variables vary across the study area. For each variable long-term seasonal indices such as annual average, monthly minimum and amplitude were used to exclude effects of temporal phase differences between the hemispheres. The resulting hierarchical models revealed variations in the interdependence of the forcing variables throughout the study area and therefore provided a basis for a stratified sampling and identifying the most important variables to be collected in LBA for the Amazon basin as a whole as well as optimizing the sampling scheme for scaling up findings from the field scale to larger areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号