首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2604篇
  免费   82篇
  国内免费   40篇
  2023年   38篇
  2022年   44篇
  2021年   73篇
  2020年   58篇
  2019年   73篇
  2018年   49篇
  2017年   35篇
  2016年   42篇
  2015年   131篇
  2014年   263篇
  2013年   275篇
  2012年   234篇
  2011年   228篇
  2010年   182篇
  2009年   120篇
  2008年   118篇
  2007年   128篇
  2006年   109篇
  2005年   83篇
  2004年   66篇
  2003年   70篇
  2002年   44篇
  2001年   14篇
  2000年   16篇
  1999年   14篇
  1998年   17篇
  1997年   17篇
  1996年   22篇
  1995年   11篇
  1994年   19篇
  1993年   15篇
  1992年   14篇
  1991年   10篇
  1990年   10篇
  1989年   8篇
  1988年   6篇
  1987年   11篇
  1985年   8篇
  1984年   3篇
  1982年   3篇
  1981年   6篇
  1980年   7篇
  1979年   5篇
  1978年   5篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1972年   3篇
  1971年   5篇
  1970年   3篇
排序方式: 共有2726条查询结果,搜索用时 31 毫秒
71.
The peripheral dopaminergic system plays a crucial role in blood pressure regulation through its actions on renal hemodynamics and epithelial ion transport. The dopamine D5 receptor (D5R) interacts with sorting nexin 1 (SNX1), a protein involved in receptor retrieval from the trans-Golgi network. In this report, we elucidated the spatial, temporal, and functional significance of this interaction in human renal proximal tubule cells and HEK293 cells stably expressing human D5R and in mice. Silencing of SNX1 expression via RNAi resulted in the failure of D5R to internalize and bind GTP, blunting of the agonist-induced increase in cAMP production and decrease in sodium transport, and up-regulation of angiotensin II receptor expression, of which expression was previously shown to be negatively regulated by D5R. Moreover, siRNA-mediated depletion of renal SNX1 in C57BL/6J and BALB/cJ mice resulted in increased blood pressure and blunted natriuretic response to agonist in salt-loaded BALB/cJ mice. These data demonstrate a crucial role for SNX1 in D5R trafficking and that SNX1 depletion results in D5R dysfunction and thus may represent a novel mechanism for the pathogenesis of essential hypertension.  相似文献   
72.
73.
L-type voltage-dependent Ca2+ channels (LVDCC) and large conductance Ca2+-activated K+ channels (BKCa) are the major factors defining membrane excitability in vascular smooth muscle cells (VSMCs). The Ca2+ release from sarcoplasmic reticulum through ryanodine receptor significantly contributes to BKCa activation in VSMCs. In this study direct coupling between LVDCC (Cav1.2) and BKCa and the role of caveoline-1 on their interaction in mouse mesenteric artery SMCs were examined. The direct activation of BKCa by Ca2+ influx through coupling LVDCC was demonstrated by patch clamp recordings in freshly isolated VSMCs. Using total internal reflection fluorescence microscopy, it was found that a large part of yellow fluorescent protein-tagged BKCa co-localized with the cyan fluorescent protein-tagged Cav1.2 expressed in the plasma membrane of primary cultured mouse VSMCs and that the two molecules often exhibited FRET. It is notable that each BKα subunit of a tetramer in BKCa can directly interact with Cav1.2 and promotes Cav1.2 cluster in the molecular complex. Furthermore, caveolin-1 deficiency in knock-out (KO) mice significantly reduced not only the direct coupling between BKCa and Cav1.2 but also the functional coupling between BKCa and ryanodine receptor in VSMCs. The measurement of single cell shortening by 40 mm K+ revealed enhanced contractility in VSMCs from KO mice than wild type. Taken together, caveolin-1 facilitates the accumulation/clustering of BKCa-LVDCC complex in caveolae, which effectively regulates spatiotemporal Ca2+ dynamics including the negative feedback, to control the arterial excitability and contractility.  相似文献   
74.
The interaction between vascular cells and macrophages is critical during vascular remodeling. Here we report that the scaffolding protein, ezrin-binding phosphoprotein 50 (EBP50), is a central regulator of macrophage and vascular smooth muscle cells (VSMC) function. EBP50 is up-regulated in intimal VSMC following endoluminal injury and promotes neointima formation. However, the mechanisms underlying these effects are not fully understood. Because of the fundamental role that inflammation plays in vascular diseases, we hypothesized that EBP50 mediates macrophage activation and the response of vessels to inflammation. Indeed, EBP50 expression increased in primary macrophages and VSMC, and in the aorta of mice, upon treatment with LPS or TNFα. This increase was nuclear factor-κB (NF-κB)-dependent. Conversely, activation of NF-κB was impaired in EBP50-null VSMC and macrophages. We found that inflammatory stimuli promote the formation of an EBP50-PKCζ complex at the cell membrane that induces NF-κB signaling. Macrophage activation and vascular inflammation after acute LPS treatment were reduced in EBP50-null cells and mice as compared with WT. Furthermore, macrophage recruitment to vascular lesions was significantly reduced in EBP50 knock-out mice. Thus, EBP50 and NF-κB participate in a feed-forward loop leading to increased macrophage activation and enhanced response of vascular cells to inflammation.  相似文献   
75.
BMP4 has been shown to induce C3H10T1/2 pluripotent stem cells to commit to adipocyte lineage. In addition to several proteins identified, microRNAs also play a critical role in the process. In this study, we identified microRNA-140 (miR-140) as a direct downstream component of the BMP4 signaling pathway during the commitment of C3H10T1/2 cells to adipocyte lineage. Overexpression of miR-140 in C3H10T1/2 cells promoted commitment, whereas knockdown of its expression led to impairment. Additional studies indicated that Ostm1 is a bona fide target of miR-140, which is significantly decreased during commitment, and Ostm1 was also demonstrated to function as an anti-adipogenic factor.  相似文献   
76.
Activation of Na+,HCO3 cotransport in vascular smooth muscle cells (VSMCs) contributes to intracellular pH (pHi) control during artery contraction, but the signaling pathways involved have been unknown. We investigated whether physical and functional interactions between the Na+,HCO3 cotransporter NBCn1 (slc4a7) and the Ca2+/calmodulin-activated serine/threonine phosphatase calcineurin exist and play a role for pHi control in VSMCs. Using a yeast two-hybrid screen, we found that splice cassette II from the N terminus of NBCn1 interacts with calcineurin Aβ. When cassette II was truncated or mutated to disrupt the putative calcineurin binding motif PTVVIH, the interaction was abolished. Native NBCn1 and calcineurin Aβ co-immunoprecipitated from A7r5 rat VSMCs. A peptide (acetyl-DDIPTVVIH-amide), which mimics the putative calcineurin binding motif, inhibited the co-immunoprecipitation whereas a mutated peptide (acetyl-DDIATAVAA-amide) did not. Na+,HCO3 cotransport activity was investigated in VSMCs of mesenteric arteries after an NH4+ prepulse. During depolarization with 50 mm extracellular K+ to raise intracellular [Ca2+], Na+,HCO3 cotransport activity was inhibited 20–30% by calcineurin inhibitors (FK506 and cyclosporine A). FK506 did not affect Na+,HCO3 cotransport activity in VSMCs when cytosolic [Ca2+] was lowered by buffering, nor did it disrupt binding between NBCn1 and calcineurin Aβ. FK506 augmented the intracellular acidification of VSMCs during norepinephrine-induced artery contractions. No physical or functional interactions between calcineurin Aβ and the Na+/H+ exchanger NHE1 were observed in VSMCs. In conclusion, we demonstrate a physical interaction between calcineurin Aβ and cassette II of NBCn1. Intracellular Ca2+ activates Na+,HCO3 cotransport activity in VSMCs in a calcineurin-dependent manner which is important for protection against intracellular acidification.  相似文献   
77.
78.
Maturity onset diabetes of the young (MODY) is an autosomal dominant disease. Despite extensive research, the mechanism by which a mutant MODY gene results in monogenic diabetes is not yet clear due to the inaccessibility of patient samples. Induced pluripotency and directed differentiation toward the pancreatic lineage are now viable and attractive methods to uncover the molecular mechanisms underlying MODY. Here we report, for the first time, the derivation of human induced pluripotent stem cells (hiPSCs) from patients with five types of MODY: MODY1 (HNF4A), MODY2 (GCK), MODY3 (HNF1A), MODY5 (HNF1B), and MODY8 (CEL) with a polycistronic lentiviral vector expressing a Cre-excisable human “stem cell cassette” containing the four reprogramming factors OCT4, KLF4, SOX2, and CMYC. These MODY-hiPSCs morphologically resemble human pluripotent stem cells (hPSCs), express pluripotency markers OCT4, SOX2, NANOG, SSEA-4, and TRA-1–60, give rise to derivatives of the three germ layers in a teratoma assay, and are karyotypically normal. Overall, our MODY-hiPSCs serve as invaluable tools to dissect the role of MODY genes in the development of pancreas and islet cells and to evaluate their significance in regulating beta cell function. This knowledge will aid future attempts aimed at deriving functional mature beta cells from hPSCs.  相似文献   
79.
Humans and other higher primates are unique among mammals in using complement receptor 1 (CR1, CD35) on red blood cells (RBC) to ligate complement-tagged inflammatory particles (immune complexes, apoptotic/necrotic debris, and microbes) in the circulation for quiet transport to the sinusoids of spleen and liver where resident macrophages remove the particles, but allow the RBC to return unharmed to the circulation. This process is called immune-adherence clearance. In this study we found using luminometric- and fluorescence-based methods that ligation of CR1 on human RBC promotes ATP release. Our data show that CR1-mediated ATP release does not depend on Ca2+ or enzymes previously shown to mediate an increase in membrane deformability promoted by CR1 ligation. Furthermore, ATP release following CR1 ligation increases the mobility of the lipid fraction of RBC membranes, which in turn facilitates CR1 clustering, and thereby enhances the binding avidity of complement-opsonized particles to the RBC CR1. Finally, we have found that RBC-derived ATP has a stimulatory effect on phagocytosis of immune-adherent immune complexes.  相似文献   
80.
Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号