首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100677篇
  免费   7613篇
  国内免费   4140篇
  2024年   172篇
  2023年   1413篇
  2022年   2223篇
  2021年   3301篇
  2020年   3323篇
  2019年   3923篇
  2018年   3658篇
  2017年   2613篇
  2016年   2589篇
  2015年   3361篇
  2014年   5979篇
  2013年   7146篇
  2012年   4261篇
  2011年   5708篇
  2010年   4313篇
  2009年   5036篇
  2008年   5147篇
  2007年   5198篇
  2006年   4757篇
  2005年   4202篇
  2004年   3733篇
  2003年   3103篇
  2002年   2760篇
  2001年   1946篇
  2000年   1699篇
  1999年   1609篇
  1998年   1560篇
  1997年   1412篇
  1996年   1377篇
  1995年   1289篇
  1994年   1199篇
  1993年   1097篇
  1992年   1020篇
  1991年   919篇
  1990年   789篇
  1989年   711篇
  1988年   640篇
  1987年   616篇
  1986年   533篇
  1985年   692篇
  1984年   871篇
  1983年   602篇
  1982年   750篇
  1981年   552篇
  1980年   532篇
  1979年   470篇
  1978年   327篇
  1977年   283篇
  1976年   248篇
  1973年   191篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
241.
Summary Resistance to watermelon mosaic virus-2 in Phaseolus vulgaris L. is conferred by two distinct dominant alleles at independent loci. Based on segregation data one locus is designated Wmv, the other, Hsw. The dominant allele Wmv from cv. Great Northern 1140 prevents systemic spread of the virus but viral replication occurs in inoculated tissue. In contrast, Hsw confers both local and systemic resistance to WMV-2 below 30C. At higher temperatures, plants that carry this allele in the absence of modifying or epistatic factors develop systemic veinal necrosis upon inoculation with the virus that results in rapid death. Patho-type specificity has not been demonstrated for either allele; both factors confer resistance to every isolate tested. A temperature-sensitive shift in epistasis is apparent between dominant alleles at these loci. Because Hsw is very tightly linked if not identical to the following genes for hypersensitivity to potyviruses I, (bean common mosaic virus), Bcm, (blackeye cowpea mosaic virus), Cam, (cowpea aphid-borne mosaic virus) and Hss (soybean mosaic virus), parental, reciprocal dihybrid F1 populations, and selected F3 families were inoculated with each of these viruses and held at 35 C. F1 populations developed vascular necrosis completely or primarily limited to inoculated tissue, while F3 families from WMV-2-susceptible segregates were uniformly susceptible to these viruses. The relationship between Hsw, Wmv and other genes for potyvirus resistance suggest patterns in the evolution of resistance and viral pathogenicity. Characterization of the resistance spectrum associated with each factor provides an additional criterion to distinguish genes for plant virus resistance.  相似文献   
242.
盾叶薯蓣地上部分的三个新甾体皂甙   总被引:11,自引:0,他引:11  
从盾叶薯蓣Dioscorea zingiberensis Wright地上部分分离鉴定了四个甾体皂甙,经鉴定甙A为约莫皂甙元-3-O-[α-L-鼠李吡喃糖基(1→2)]-β-D-葡萄吡喃糖甙;甙B为24α-羟基约莫皂甙元-3-O-[α-L-鼠李吡喃糖基(1→2)]β-D-葡萄吡喃糖甙;甙C为约莫皂甙元-3-O-[α-L-鼠李吡喃糖基(1→2)][β-D-葡萄吡喃糖基(1→4)]-β-D-葡萄吡喃糖基;甙D为约莫皂甙元-3-O-[α-L-鼠李吡喃糖基(1→2)][β-D-葡萄吡喃糖基(1→3)]-β-D-葡萄吡喃糖甙。前三者为新化合物,分别命名为盾叶皂甙A_1、A_2、A_3(zingiberoside A_1、A_2、A_3),其中盾叶皂甙A_2的甙元为一新甾体皂甙元,命名为盾叶皂甙元(zingiberogenin)。  相似文献   
243.
Both Lys-166 and His-291 of ribulosebisphosphate carboxylase/oxygenase fromRhodospirillum rubrum have been implicated as the active-site residue that initiates catalysis. To decide between these two candidates, we resorted to site-directed mutagenesis to replace Lys-166 and His-291 with several amino acids. All 7 of the position-166 mutants tested are severely deficient in carboxylase activity, whereas the alanine and serine mutants at position 291 are ∼40% and ∼18% as active as the native carboxylase, essentially ruling out His-291 in theRhodospirillum rubrum carboxylase (and by inference His-298 in the spinach enzyme) as a catalytically essential residue. The ability of some of the mutant proteins to undergo carbamate formation or to bind either ribulosebisphosphate or a transition-state analogue remains largely unimpaired. This implies that Lys-166 is not required for substrate binding; rather, the results corroborate the earlier postulate that Lys-166 functions as an acid-base group in catalysis or in stabilizing a transition state in the reaction pathway.  相似文献   
244.
Summary The presence of a Ca2+ channel in the plasmalemma of tonoplast-freeNitellopsis obtusa cells was demonstrated and its characteristics were studied using current- and voltage-clamp techniques. A long-lasting inward membrane current (I m ), recorded using a step voltage clamp, consisted of a single component without time-dependent inactivation. Increasing either [Ca2+] o or [Cl] o 1) enhanced the maximum amplitude of inwardI m ((I m ) p ) and 2) shifted the peak voltage ((V m ) p ) at(I m ) p to more positive values under ramp-shaped voltage clamping and 3) depolarized the peak value of action potentials. This behavior is consistent with predictions based on the Nernst equation for Ca2+ but not for Cl. DIDS (4,4-diisothiocyano-2,2-disulfonic acid stilbene) did not suppress(I m ) p in tonoplast-free cells, in contrast with its effect on normal cells. La3+ and nifedipine blocked(I m ) p irreversibly. On the other hand, Ca2+ channel agonist, BAY K 8644 irreversibly enhanced(I m ) p . Both Sr2+ influx and K+ efflux increased upon excitation. The charge carried by Sr2+ influx was compensated for by K+ efflux. It is concluded that only the Ca2+ channel is activated during plasmalemma excitation in tonoplast-free cells. In terms of the magnitude of(I m ) p , Sr2+ could replace Ca2+, but Mn2+, Mg2+ and Ba2+ could not. External pH affected(I m ) p and the membrane conductance (g m ) at(I m ) p ((g m ) p ). Increasing the external ionic strength caused increases in both(I m ) p and(g m ) p , and shifted(V m ) p to positive values. At the same time, Sr2+ influx increased. Thus Ca2+ channel activation seems to be enhanced by increasing external ionic strength. The possible involvement of surface potential is discussed.  相似文献   
245.
Summary Sodium-calcium exchange has been suggested to play a pivotal role in the regulation of cytosolic free calcium (Ca f ) by epithelial cells. Using isolated epithelial cells from the toad urinary bladder, Ca f has been measured using the intracellular Casensitive fluorescent dyes Fura 2 and Quin. 2. Dye loading did not alter cell viability as assessed by measurements of ATP and ADP content or cell oxygen consumption. When basal Ca f was examined over a wide range of cell dye content (from 0.04 to 180 nmol dye/mg protein) an inverse relationship was observed. At low dye content, Ca f was 300–380 nM and, as dye content was increased, Ca f progressively fell to 60 nM. Using low dye content cells, in which minimal alteration in Ca steady state would be expected, the role for plasma membrane Na–Ca exchange was examined using either medium sodium substitution or ouabain. While medium sodium substitution increased Ca f , prolonged treatment with ouabain had no effect on Ca f despite a clear increase in cell sodium content. The lack of effect of ouabain suggests that Na–Ca exchange-mediated Ca efflux plays a minimal role in the regulation of basal Ca f . However, exchange-mediated Ca efflux may play a role in Ca f regulation when cytosolic calcium is elevated.  相似文献   
246.
Summary Patch-clamp techniques were used to study a K channel in the cell membrane of MDCK cells. This cell line derives from the kidney of a normal dog, presumably from the distal nephron, a region involved in potassium secretion. The cells were cultured in confluent monolayers and approached from the apical side. The K channel we describe is Ca2+ and voltage activated, has a conductance of 221±7 pS, and can be inhibited by 10mm tetraethylammonium and by 1mm quinidine, but not by 4-aminopyridine, nor by 1mm Ba2+ added to the outer side. Using the whole-cell configuration, we find that most of the cationic conductance of the membrane is constituted by a K-specific one (maximum K conductance 32.1±3.9 nSvs. a leak conductance of 1.01±0.17 nS). Comparisons of the maximum K conductance with that of a single K channel indicates that an MDCK cell has an average of 145 such channels. The membrane capacity is 24.5±1.4 pF.  相似文献   
247.
Summary Taste discs were dissected from the tongue ofR. ridibunda and their cells dissociated by a collagenase/low Ca/mechanical agitation protocol. The resulting cell suspension contained globular epithelial cells and, in smaller number, taste receptor cells. These were identified by staining properties and by their preserved apical process, the tip of which often remained attached to an epithelial (associated) cell. When the patch pipette contained 110mm KCl and the cells were superfused with NaCl Ringer's during whole-cell recording, the mean zero-current potential of 22 taste receptor cells was –65.2 mV and the slope resistance 150 to 750 M. Pulse-depolarization from a holding voltage of –80 mV activated a transient TTX-blockable inward Na current. Activation became noticeable at –25 mV and was half-maximal at –8 mV. Steady-state inactivation was half-maximal at –67 mV and complete at –50 mV. Peak Na current averaged –0.5 nA/cell. The Ca-ionophore A23187 shifted the activation and inactivation curve to more negative voltages. Similar shifts occurred when the pipette Ca was raised. External Ni (5mm) shifted the activation curve towards positive voltages by 10 mV. Pulse depolarization also activated outward K currents. Activation was slower than that of Na current and inactivation slower still. External TEA (7.5mm) and 4-aminopyridine (1mm) did not block, but 5mm Ba blocked the K currents. K-tail currents were seen on termination of depolarizing voltage pulses. A23187 shifted theI K(V)-curve to more negative voltages. Action potentials were recorded when passing pulses of depolarizing outward current. Of the frog gustatory stimulants, 10mm Ca caused a reversible 5-to 10-mV depolarization in the current-clamp mode. Quinine (0.1mm, bitter) produced a reversible depolarization accompanied by a full block of Na current and, with slower time-course, a partial block of K currents. Cyclic AMP (5mm in the external solution or 0.5 m in the pipette) caused reversible depolarization (to –40 to –20 mV) due to partial blockage of K currents, but only if ATP was added to the pipette solution. Similar responses were elicited by stimulating the adenylate cyclase with forskolin. Blockage of cAMP-phosphodiesterase enhanced the response to cAMP. These results suggest that cAMP may be one of the cytosolic messengers in taste receptor cells. Replacement of ATP by AMP-PNP in the pipette abolished the depolarizing response to cAMP. Inclusion of ATP--S in the pipette caused slow depolarization to –40 to –20 mV, due to partial blockage of K currents. Subsequently, cAMP was without effect. The remaining K currents were blockable by Ba. These results suggest that cAMP initiates phosphorylation of one set of K channels to a nonconducting conformation.  相似文献   
248.
Summary K+ channels in inside-out patches from hamster insulin tumor (HIT) cells were studied using the patch-clamp technique. HIT cells provide a convenient system for the study of ion channels and insulin secretion. They are easy to culture, form gigaohm seals readily and secrete insulin in response to glucose. The properties of the cells changed with the passage number. For cell passage numbers 48 to 56, five different K+-selective channels ranging from 15 to 211 pS in symmetrical 140mm KCl solutions were distinguished. The channels were characterized by the following features: a channel with a conductance (in symmetrical 140mm KCl solutions) of 210 pS that was activated by noncyclic purine nucleotides and closed by H+ ions (pH=6.8); a 211 pS channel that was Ca2+-activated and voltage dependent; a 185 pS channel that was blocked by TEA but was insensitive to quinine or nucleotides; a 130 pS channel that was activated by membrane hyperpolarization; and a small conductance (15 pS) channel that was not obviously affected by any manipulation. As determined by radioimmunoassay, cells from passage number 56 secreted 917±128 ng/mg cell protein/48 hr of insulin. In contrast, cells from passage number 77 revealed either no channel activity or an occasional nonselective channel, and secreted only 29.4±8.5 ng/mg cell protein/48 hr of insulin. The nonselective channel found in the passage 77 cells had a conductance of 25 pS in symmetrical 140mm KCl solutions. Thus, there appears to be a correlation between the presence of functional K+ channels and insulin secretion.  相似文献   
249.
250.
Type B photoreceptors of the nudibranch mollusc Hermissenda crassicornis receive excitatory synaptic potentials (EPSPs) whose frequency is controlled by potential changes of a neighboring cell known as the S optic ganglion cell which is thought to be electrically coupled to the presynaptic source of these EPSPs, the E optic ganglion cell. The frequency of the EPSPs increases when a conditioned stimulus (light) is paired with an unconditioned stimulus (rotation) during acquisition of a Pavlovian conditioned response. The results of the present study are consistent with an adrenergic origin for these EPSPs. Noradrenergic agonists (greater than 100 microM), norepinephrine and clonidine, only slightly depolarize the type B cell but clearly prolong its depolarizing response to light. Serotonin, by contrast, causes hyperpolarization of the type B cell's resting potential as well as after a light step. Clonidine reduces voltage-dependent outward K+ currents (IA, an early current, ICa2+-K+, a late Ca2+-dependent current) that control the type B cell's excitability (and thus its light response and membrane potential). These effects of clonidine are reduced or blocked by the alpha 2-receptor antagonist, yohimbine (0.5 microM), but not the alpha 1-blocker, prazosin. The same yohimbine concentration also blocked depolarizing synaptic excitation of the type B cell in response to depolarization of a simultaneously impaled S optic ganglion cell. Histochemical techniques (both the glyoxylic acid method of de la Torre and Surgeon and the formaldehyde-induced fluorescence or Falck-Hillarp method) demonstrated the presence of a biogenic amine(s) within a single neuron in each optic ganglion as well as three or four cells within the vicinity of previously identified visual interneurons. No serotonergic neurons were found within the optic ganglion or in proximity to visual interneurons. A clonidine-like synaptic effect on type B cells, therefore, could amplify conditioning-specific changes of membrane currents by increasing type B depolarization and possibly, as well, by elevating intracellular second messengers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号