首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1209篇
  免费   85篇
  国内免费   77篇
  2024年   2篇
  2023年   28篇
  2022年   25篇
  2021年   52篇
  2020年   42篇
  2019年   56篇
  2018年   44篇
  2017年   41篇
  2016年   34篇
  2015年   47篇
  2014年   79篇
  2013年   62篇
  2012年   51篇
  2011年   57篇
  2010年   52篇
  2009年   48篇
  2008年   64篇
  2007年   62篇
  2006年   39篇
  2005年   53篇
  2004年   35篇
  2003年   34篇
  2002年   46篇
  2001年   30篇
  2000年   23篇
  1999年   19篇
  1998年   23篇
  1997年   16篇
  1996年   19篇
  1995年   13篇
  1994年   15篇
  1993年   16篇
  1992年   9篇
  1991年   8篇
  1990年   7篇
  1989年   8篇
  1988年   8篇
  1987年   10篇
  1986年   5篇
  1985年   9篇
  1984年   11篇
  1983年   14篇
  1982年   17篇
  1981年   11篇
  1980年   7篇
  1979年   6篇
  1978年   3篇
  1976年   4篇
  1974年   2篇
  1971年   1篇
排序方式: 共有1371条查询结果,搜索用时 109 毫秒
81.
Calexcitin (CE) is a calcium-binding protein, closely related to sarcoplasmic calcium-binding proteins, that is involved in invertebrate learning and memory. Early reports indicated that both Hermissenda and squid CE also could bind GTP; however, the biochemical significance of GTP-binding and its relationship to calcium binding have remained unclear. Here, we report that the GTPase activity of CE is strongly regulated by calcium. CE possessed a P-loop-like structure near the C-terminal similar to the phosphate-binding regions in other GTP-binding proteins. Site-directed mutagenesis of this region showed that Gly182, Phe186 and Gly187 are required for maximum affinity, suggesting that the GTP-binding motif is G-N-x-x-[FM]-G. CE cloned from Drosophila CNS possessed a similar C-terminal sequence and also bound and hydrolyzed GTP. GTPase activity in Drosophila CE was also strongly regulated by Ca2+, exhibiting over 23-fold higher activity in the presence of 0.3 μM calcium. Analysis of the conserved protein motifs defines a new family of Ca2+-binding proteins representing the first example of proteins endowed with both EF-hand calcium binding domains and a C-terminal, P-loop-like GTP-binding motif. These results establish that, in the absence of calcium, both squid and Drosophila CE bind GTP at near-physiological concentrations and hydrolyze GTP at rates comparable to unactivated ras. Calcium functions to increase GTP-binding and GTPase activity in CE, similar to the effect of GTPase activating proteins in other low-MW GTP-binding proteins. CE may, therefore, act as a molecular interface between Ca2+ cytosolic oscillations and the G protein-coupled signal transduction.  相似文献   
82.
We report the formation and appearance of loosely stacked extended grana like structures along with plastoglobuli in the chloroplasts isolated from 27-day old senescing cucumber cotyledons. The origin and the nature of these extended grana structures have not been elucidated earlier. We isolated Photosystem I complexes from 6-day-old control and 27-day-old senescing cotyledons. The chlorophyll a/b ratio of the isolated Photosystem I complex obtained from 6-day cotyledons was 5–5.5 as against a ratio of 2.9 was found in Photosystem I complexes obtained from 27-day-old senescing cotyledons. We also found that the presence of LHC II in the Photosystem I complexes isolated from 27-day cotyledonary chloroplasts. The presence of LHC II in Photosystem I complexes in senescing and not in control samples, clearly suggest the detachment and diffusion of LHC II complexes from stacked grana region to Photosystem I enriched stroma lamellar region thereby, forming loose disorganized extended grana structures seen in the transmission electron microscope. Furthermore, we show that under in vitro condition the senescing cotyledon chloroplasts exhibited lower extent of light induced phosphorylation of LHC II than the control samples suggesting a possible irreversible phosphorylation and diffusion of LHC II in vivo during the progress of senescence in Cucumis cotyledons. From these findings, we suggest that the senescence induced phosphorylation of LHC II and its migration towards Photosystem I may be a programmed one some how causing the destruction of the thylakoid membrane. The released membrane components may be stored in the plastoglobuli prior to their mobilization to the younger plant parts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
83.
84.
85.
The plant cell cycle inhibitor gene KRP6 has been investigated in roots infected by plant-parasitic root-knot nematodes (Meloidogyne spp.). Unexpectedly, KRP6 overexpressing lines revealed a distinct role for this specific KRP as an activator of the mitotic cell cycle. This function was confirmed in Arabidopsis thaliana suspension cultures ectopically expressing KRP6. A blockage in the mitotic exit was observed in cell suspensions and in giant cells resulted in the appearance of multi-nucleated cells. KRP6 expression during nematode infection and the similarity in phenotypes among KRP6 overexpressing cell cultures and giant-cell morphology strongly suggest that KRP6 is involved in multinucleation and acytokinesis occurring in giant-cells. Once again nematodes have been shown to manipulate the plant cell cycle machinery in order to promote gall establishment.  相似文献   
86.
Axonal miRNAs locally regulate axonal growth by modulating local protein composition. Whether localized miRNAs in the axon mediate the inhibitory effect of Chondroitin sulfate proteoglycans (CSPGs) on the axon remains unknown. We showed that in cultured cortical neurons, axonal application of CSPGs inhibited axonal growth and altered axonal miRNA profiles, whereas elevation of axonal cyclic guanosine monophosphate (cGMP) levels by axonal application of sildenafil reversed the effect of CSPGs on inhibition of axonal growth and on miRNA profiles. Specifically, CSPGs elevated and reduced axonal levels of miR‐29c and integrin β1 (ITGB1) proteins, respectively, while elevation of cGMP levels overcame these CSPG effects. Gain‐of‐ and loss‐of‐function experiments demonstrated that miR‐29c in the distal axon mediates axonal growth downstream of CSPGs and cGMP by regulating axonal protein levels of ITGB1, FAK, and RhoA. Together, our data demonstrate that axonal miRNAs play an important role in mediating the inhibitory action of CSPGs on axonal growth and that miR‐29c at least partially mediates this process. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1402–1419, 2015  相似文献   
87.
Influenza virus assembles in the budozone, a cholesterol-/sphingolipid-enriched (“raft”) domain at the apical plasma membrane, organized by hemagglutinin (HA). The viral protein M2 localizes to the budozone edge for virus particle scission. This was proposed to depend on acylation and cholesterol binding. We show that M2–GFP without these motifs is still transported apically in polarized cells. Employing FRET, we determined that clustering between HA and M2 is reduced upon disruption of HA’s raft-association features (acylation, transmembranous VIL motif), but remains unchanged with M2 lacking acylation and/or cholesterol-binding sites. The motifs are thus irrelevant for M2 targeting in cells.  相似文献   
88.
Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration-dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   
89.
Geminin is a protein involved in both DNA replication and cell fate acquisition. Although it is essential for mammalian preimplantation development, its role remains unclear. In one study, ablation of the geminin gene (Gmnn) in mouse preimplantation embryos resulted in apoptosis, suggesting that geminin prevents DNA re-replication, whereas in another study it resulted in differentiation of blastomeres into trophoblast giant cells (TGCs), suggesting that geminin regulates trophoblast specification and differentiation. Other studies concluded that trophoblast differentiation into TGCs is regulated by fibroblast growth factor-4 (FGF4), and that geminin is required to maintain endocycles. Here we show that ablation of Gmnn in trophoblast stem cells (TSCs) proliferating in the presence of FGF4 closely mimics the events triggered by FGF4 deprivation: arrest of cell proliferation, formation of giant cells, excessive DNA replication in the absence of DNA damage and apoptosis, and changes in gene expression that include loss of Chk1 with up-regulation of p57 and p21. Moreover, FGF4 deprivation of TSCs reduces geminin to a basal level that is required for maintaining endocycles in TGCs. Thus, geminin acts both like a component of the FGF4 signal transduction pathway that governs trophoblast proliferation and differentiation, and geminin is required to maintain endocycles.  相似文献   
90.
The components of biological membranes are present in a physical mixture. The nonrandom ways that the molecules of lipids and proteins mix together can strongly influence the association of proteins with each other, and the chemical reactions that occur in the membrane, or that are mediated by the membrane. A particular type of nonrandom mixing is the separation of compositionally distinct phases. Any such phase separation would result in preferential partition of some proteins and lipids between the coexisting phases, and thus would influence which proteins could be in contact, and whether a protein could find its target. Phase separation in a plasma membrane would also influence the binding of molecules from outside the cell to the membrane, including recognition proteins on viruses, bacteria, and other cells. The concept of these and other events associated with membrane phase separation are sometimes grouped together as the “raft model” of biological membranes. Several types of experiments are aimed at detecting and characterizing membrane phase separation. Visualizing phase separation has special value, both because the immiscibility is so decisively determined, and also because the type of phase can often be identified. The fluorescence microscope has proven uniquely useful for yielding images of separated phases, both in certain cell preparations, and especially in models of cell membranes. Here we discuss ways to prepare useful model membranes for image studies, and how to avoid some of the artifacts that can plague these studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号