首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   16篇
  国内免费   5篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   4篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2011年   9篇
  2010年   2篇
  2009年   9篇
  2008年   15篇
  2007年   11篇
  2006年   9篇
  2005年   7篇
  2004年   6篇
  2003年   9篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   4篇
  1997年   8篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   6篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1985年   12篇
  1984年   1篇
  1983年   6篇
  1982年   11篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
31.
Abstract. Humus profiles were sampled along an altitudinal gradient in the Macot‐La‐Plagne Forest (France, northern Alps) to investigate variation occurring under carpets of Vaccinium myrtillus present within Picea abies forests. The vertical distribution of subterranean organs of V. myrtillus was compared with (1) that of P. abies roots and other accompanying vegetation and (2) other components of humus profiles, in particular humified organic matter mainly consisting of animal faeces. It was shown that V. myrtillus roots were mostly concentrated in mineral horizons, while P. abies roots and V. myrtillus rhizomes occupied litter horizons. This was interpreted in terms of competition for nutrient capture between P. abies and V. myrtillus. The effects of altitude were (1) a change in the vegetation accompanying V. myrtillus in dense V. myrtillus carpets, bryophytes at the montane level being replaced by forbs at the sub‐alpine level and (2) a decrease in the thickness of ecto‐organic horizons. This was interpreted as a shift from a moder system characterized by recalcitrant litter (moss) processed by an active faunal community (stabilized in the form of animal faeces) to a mor system characterized by low animal abundance but with litter of better quality which is easily leached in the absence of prominent faunal activity.  相似文献   
32.
It is generally assumed in dendroecological studies that annual tree-ring growth is adequately determined by a linear function of local or regional precipitation and temperature with a set of coefficients that are temporally invariant. However, various researchers have maintained that tree-ring records are the result of multivariate, often nonlinear biological and physical processes. To describe critical processes linking climate variables with tree-ring formation, the process-based tree-ring Vaganov–Shashkin model (VS-model) was successfully used. However, the VS-model is a complex tool requiring a considerable number of model parameters that should be re-estimated for each forest stand. Here we present a new visual approach of process-based tree-ring model parameterization (the so-called VS-oscilloscope) which allows the simulation of tree-ring growth and can be easily used by researchers and students. The VS-oscilloscope was tested on tree-ring data for two species (Larix gmeliniiand Picea obovata) growing in the permafrost zone of Central Siberia. The parameterization of the VS-model provided highly significant positive correlations (p < 0.0001) between simulated growth curves and original tree-ring chronologies for the period 1950–2009. The model outputs have shown differences in seasonal tree-ring growth between species that were well supported by the field observations. To better understand seasonal tree-ring growth and to verify the VS-model findings, a multi-year natural field study is needed, including seasonal observation of the thermo-hydrological regime of the soil, duration and rate of tracheid development, as well as measurements of their anatomical features.  相似文献   
33.
Questions: Can a statistical model be designed to represent more directly the nature of organismal response to multiple interacting factors? Can multiplicative kernel smoothers be used for this purpose? What advantages does this approach have over more traditional habitat modelling methods? Methods: Non‐parametric multiplicative regression (NPMR) was developed from the premises that: the response variable has a minimum of zero and a physiologically‐determined maximum, species respond simultaneously to multiple ecological factors, the response to any one factor is conditioned by the values of other factors, and that if any of the factors is intolerable then the response is zero. Key features of NPMR are interactive effects of predictors, no need to specify an overall model form in advance, and built‐in controls on overfitting. The effectiveness of the method is demonstrated with simulated and real data sets. Results: Empirical and theoretical relationships of species response to multiple interacting predictors can be represented effectively by multiplicative kernel smoothers. NPMR allows us to abandon simplistic assumptions about overall model form, while embracing the ecological truism that habitat factors interact.  相似文献   
34.
35.
Female fourth- and sixth-instar larvae, Choristoneura fumiferana, were tested individually for the response of the sugar cell on the lateral styloconic sensillum to 25 mM/l concentrations of 12 carbohydrates. The spruce budworm showed an age-related change in responsiveness of the sugar cell. The order of stimulating effectiveness for fourth-instars was melibiose > sucrose > raffinose.These storage di- and trisaccharides are present in the host plant at the beginning of budbreak. Sixth-instars responded to sucrose > fructose> m-inositol. These findings are in accordance with those of a previous behavioural study on feeding preferences of sixth-instars. The response for both melibiose and raffinose does not change from fourth- to sixth-instars; however, it does for sucrose, fructose and m- inositol.  相似文献   
36.
Landscape‐level forest management has long been hypothesized to affect forest insect outbreak dynamics, but empirical evidence remains elusive. We hypothesized that the combination of increased hardwood relative to host tree species, prevalence of younger forests, and fragmentation of those forests due to forest harvesting legacies would reduce outbreak intensity, increase outbreak frequency, and decrease spatial synchrony in spruce budworm Choristoneura fumiferana outbreaks. We investigated these hypotheses using tree ring samples collected across 51 sites pooled into 16 subareas distributed across a large ecoregion spanning the international border between Ontario (Canada), and Minnesota (USA). This ecoregion contains contrasting land management zones with clear differences in forest landscape structure (i.e. forest composition and spatial configuration) while minimizing the confounding influence of climate. Cluster analyses of the 76‐yr time‐series generally grouped by subareas found within the same land management zone. Spatial nonparametric covariance analysis indicated that the highest and lowest degree of spatial synchrony of spruce budworm outbreaks were found within unmanaged wilderness and lands managed at fine spatial scales in Minnesota, respectively. Using multivariate analysis, we also found that forest composition, configuration, and climate together accounted for a total of 40% of the variance in outbreak chronologies, with a high level of shared variance between composition and configuration (13%) and between composition and climate (9%). At the scale of our study, climate on its own did not explain any of the spatial variation in outbreaks. Outbreaks were of higher frequency, lower intensity, and less spatially synchronized in more fragmented, younger forests with a lower proportion of host species, with opposing outbreak characteristics observed in regions characterised by older forests with more concentrated host species. Our study is the first quantitative evaluation of the long‐standing ‘silvicultural hypothesis’ of spruce budworm management specifically conducted at a spatio‐temporal scale for which it was intended.  相似文献   
37.
Adaptation to human‐induced environmental change has the potential to profoundly influence the genomic architecture of affected species. This is particularly true in agricultural ecosystems, where anthropogenic selection pressure is strong. Heliothis virescens primarily feeds on cotton in its larval stages, and US populations have been declining since the widespread planting of transgenic cotton, which endogenously expresses proteins derived from Bacillus thuringiensis (Bt). No physiological adaptation to Bt toxin has been found in the field, so adaptation in this altered environment could involve (i) shifts in host plant selection mechanisms to avoid cotton, (ii) changes in detoxification mechanisms required for cotton‐feeding vs. feeding on other hosts or (iii) loss of resistance to previously used management practices including insecticides. Here, we begin to address whether such changes occurred in H. virescens populations between 1997 and 2012, as Bt‐cotton cultivation spread through the agricultural landscape. For our study, we produced an H. virescens genome assembly and used this in concert with a ddRAD‐seq‐enabled genome scan to identify loci with significant allele frequency changes over the 15‐year period. Genetic changes at a previously described H. virescens insecticide target of selection were detectable in our genome scan and increased our confidence in this methodology. Additional loci were also detected as being under selection, and we quantified the selection strength required to elicit observed allele frequency changes at each locus. Potential contributions of genes near loci under selection to adaptive phenotypes in the H. virescens cotton system are discussed.  相似文献   
38.
Conifer‐feeding budworms emerge from overwintering sites as small larvae in early spring, several days before budburst, and mine old needles. These early‐emerging larvae suffer considerable mortality during this foraging period as they disperse in search of available, current‐year buds. Once buds flush, surviving budworms construct feeding shelters and must complete maturation before fresh host foliage senesces and lignifies later in the summer. Late‐developing larvae suffer greater mortality and survivors have lower fecundity when feeding on older foliage. Thus, there is a seasonal trade‐off in fitness associated with host synchrony: early‐emerging budworms have a greater risk of mortality during spring dispersal but gain better access to the most nutritious foliage, while, on the other hand, late‐emerging larvae incur a lower risk during the initial foraging period but must contend with rapidly diminishing resource quality at the end of the feeding period. We investigate the balance that results from these early‐season and late‐season synchrony fitness trade‐offs using the concept of the phenological window. Parameters associated with the variation in the phenological window are used to estimate generational fitness as a function of host‐plant synchrony. Because defoliation modifies these relationships, it is also included in the analysis. We show that fitness trade‐offs characterizing the phenological window result in a robust synchrony relationship between budworm and host plant over a wide geographic range in southern British Columbia, Canada.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号