首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   44篇
  国内免费   13篇
  2024年   1篇
  2022年   3篇
  2021年   6篇
  2020年   11篇
  2019年   9篇
  2018年   11篇
  2017年   16篇
  2016年   19篇
  2015年   18篇
  2014年   30篇
  2013年   30篇
  2012年   16篇
  2011年   34篇
  2010年   15篇
  2009年   28篇
  2008年   26篇
  2007年   32篇
  2006年   23篇
  2005年   22篇
  2004年   25篇
  2003年   15篇
  2002年   14篇
  2001年   13篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有452条查询结果,搜索用时 15 毫秒
11.
12.
The present work shows how UV 'light-induced molecular immobilisation' (LIMI) of biomolecules onto thiol reactive surfaces can be used to make biosensors, without the need for traditional microdispensing technologies. Using 'LIMI,' arrays of biomolecules can be created with a high degree of reproducibility. This technology can be used to circumvent the need for often expensive nano/microdispensing technologies. The ultimate size of the immobilised spots is defined by the focal area of the UV beam, which for a diffraction-limited beam can be less than 1 microm in diameter. LIMI has the added benefit that the immobilised molecules will be spatially oriented and covalently bound to the surface. The activity of the sensor molecules is retained. Antibody sensor arrays made using LIMI demonstrated successful antigen binding. In addition, the pattern of immobilised molecules on the surface is not restricted to conventional array formats. The ultimate consequence of the LIMI is that it is possible to write complex protein patterns using bitmaps at high resolution onto substrates. Thus, LIMI of biomolecules provides a new technological platform for biomolecular immobilisation and the potential for replacing present microdispensing arraying technologies.  相似文献   
13.
编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长   总被引:1,自引:0,他引:1  
肌生长抑制素(myostatin,MSTN)是转化生长因子 β(transforming growth factor-β,TGF-β)家族成员之一,是一种肌肉生长抑制因子.解除MSTN的生长抑制功能是提高畜禽肌肉产量的一种有效途径.TGF-β 的半胱氨酸节结构基元(cystine knot motif)能够稳定MSTN...  相似文献   
14.
15.
16.
Plio-Pleistocene faunal assemblages from Swartkrans Cave (South Africa) preserve large numbers of primate remains. Brain, C.K., 1981. The Hunters or the Hunted? An Introduction to African Cave Taphonomy. University of Chicago Press, Chicago suggested that these primate subassemblages might have resulted from a focus by carnivores on primate predation and bone accumulation. Brain's hypothesis prompted us to investigate, in a previous study, this taphonomic issue as it relates to density-mediated destruction of primate bones (J. Archaeol. Sci. 29, 2002, 883). Here we extend our investigation of Brain's hypothesis by examining additional intrinsic qualities of baboon bones and their role as mediators of skeletal element representation in carnivore-created assemblages. Using three modern adult baboon skeletons, we collected data on four intrinsic bone qualities (bulk bone mineral density, maximum length, volume, and cross-sectional area) for approximately 81 bones per baboon skeleton. We investigated the relationship between these intrinsic bone qualities and a measure of skeletal part representation (the percentage minimum animal unit) for baboon bones in carnivore refuse and scat assemblages. Refuse assemblages consist of baboon bones not ingested during ten separate experimental feeding episodes in which individual baboon carcasses were fed to individual captive leopards and a spotted hyena. Scat assemblages consist of those baboon bones recovered in carnivore regurgitations and feces resulting from the feeding episodes. In refuse assemblages, volume (i.e., size) was consistently the best predictor of element representation, while cross-sectional area was the poorest predictor in the leopard refuse assemblage and bulk bone mineral density (i.e., a measure of the proportion of cortical to trabecular bone) was the poorest predictor in the hyena refuse assemblage. In light of previous documentation of carnivore-induced density-mediated destruction to bone assemblages, we interpret the current findings as suggestive of the secondary importance of bulk bone mineral density to other intrinsic qualities of skeletal elements (e.g., size, maximum dimension, and average cross-sectional area). It is only when skeletal elements are too large for consumption (e.g., many long bones) that they are fragmented following intra-element patterns of density-mediated carnivore destruction. There appears to be a size threshold beneath which bulk bone mineral density contributes little to mediating carnivore destruction of carcasses. Thus, depending on body size of the predator, body size of the prey, and specific size of the element, bulk bone mineral density may play little or no role of primary importance in mediating the destruction of skeletal elements. We compare patterns in modern comparative assemblages to patterns in primate fossil assemblages from Swartkrans. One of the fossil assemblages, Swartkrans Member 1, Hanging Remnant, most closely approximates a hyena (possibly refuse) assemblage pattern, while the Swartkrans Member 2 assemblage most closely approximates a leopard (possibly scat) assemblage pattern. The Swartkrans Member 1, Lower Bank, assemblage does not closely approximate any of our modern comparative assemblage patterns.  相似文献   
17.
Excessive proliferation of vascular smooth muscle cells (VSMCs) is a critical element in the development of several vascular pathologies, particularly in atherosclerosis and in restenosis due to angioplasty. We have shown that butyrate, a powerful antiproliferative agent, a strong promoter of cell differentiation and an inducer of apoptosis inhibits VSMC proliferation at physiological concentrations with no cytotoxicity. In the present study, we have used cDNA array technology to unravel the molecular basis of the antiproliferative effect of butyrate on VSMCs. To assess the involvement of gene expression in butyrate-inhibited VSMC proliferation, proliferating VSMCs were exposed to 5 mmol/1 butyrate 1 through 5 days after plating. Expression profiles of 1,176 genes representing different functional classes in untreated control and butyrate treated VSMCs were compared. A total of 111 genes exhibiting moderate (2.0–5.0 fold to strong (> 5.0 fold) differential expression were identified. Analysis of these genes indicates that butyrate treatment mainly alters the expression of four different functional classes of genes, which include: 43 genes implicated in cell growth and differentiation, 13 genes related to stress response, 11 genes associated with vascular function and 8 genes normally present in neuronal cells. Examination of differentially expressed cell growth and differentiation related genes indicate that butyrate-inhibited VSMC proliferation appears to involve down-regulation of genes that encode several positive regulators of cell growth and up-regulation of some negative regulators of growth or differentiation inducers. Some of the down-regulated genes include proliferating cell nuclear antigen (PCNA), retinoblastoma susceptibility related protein p130 (pRb), cell division control protein 2 homolog (cdc2), cyclin B1, cell division control protein 20 homolog (p55cdc), high mobility group (HMG) 1 and 2 and several others. Whereas the up-regulated genes include cyclin D1, p21WAF1, p14INK4B/p15INK5B, Clusterin, inhibitor of DNA binding 1 (ID1) and others. On the other hand, butyrate-responsive stress-related genes include some of the members of heat shock protein (HSP), glutathione-s-transferase (GST), and glutathione peroxidase (GSH-PXs) and cytochrome P450 (CYP) families. Additionally, several genes related to vascular and neuronal function are also responsive to butyrate treatment. Although involvement of genes that encode stress response, vascular and neuronal functional proteins in cell proliferation is not clear, cDNA expression array data appear to suggest that they may play a role in the regulation of cell proliferation. However, cDNA expression profiles indicate that butyrate-inhibited VSMC proliferation involves combined action of a proportionally large number of both positive and negative regulators of growth, which ultimately causes growth arrest of VSMCs. Furthermore, these butyrate-induced differential gene expression changes are not only consistent with the antiproliferative effect of butyrate but are also in agreement with the roles that these gene products play in cell proliferation.  相似文献   
18.
19.
Proteins are the building blocks, effectors and signal mediators of cellular processes. A protein’s function, regulation and localization often depend on its interactions with other proteins. Here, we describe a protocol for the yeast protein-fragment complementation assay (PCA), a powerful method to detect direct and proximal associations between proteins in living cells. The interaction between two proteins, each fused to a dihydrofolate reductase (DHFR) protein fragment, translates into growth of yeast strains in presence of the drug methotrexate (MTX). Differential fitness, resulting from different amounts of reconstituted DHFR enzyme, can be quantified on high-density colony arrays, allowing to differentiate interacting from non-interacting bait-prey pairs. The high-throughput protocol presented here is performed using a robotic platform that parallelizes mating of bait and prey strains carrying complementary DHFR-fragment fusion proteins and the survival assay on MTX. This protocol allows to systematically test for thousands of protein-protein interactions (PPIs) involving bait proteins of interest and offers several advantages over other PPI detection assays, including the study of proteins expressed from their endogenous promoters without the need for modifying protein localization and for the assembly of complex reporter constructs.  相似文献   
20.
The African origin of hominins suggests that Taenia spp. in African carnivores are evolutionarily related to the human-infecting tapeworms Taenia solium, Taenia saginata and Taenia asiatica. Nevertheless, the hypothesis has not been verified through molecular phylogenetics of Taenia. This study aimed to perform phylogenetic comparisons between Taenia spp. from African hyenas and the congeneric human parasites. During 2010–2013, 233 adult specimens of Taenia spp. were collected from 11 spotted hyenas in Ethiopia. A screening based on short DNA sequences of the cytochrome c oxidase subunit 1 gene classified the samples into four mitochondrial lineages designated as I–IV. DNA profiles of nuclear genes for DNA polymerase delta (pold) and phosphoenolpyruvate carboxykinase (pepck) showed that lineages II and III can be assigned as two independent species. Common haplotypes of pold and pepck were frequently found in lineages I and IV, suggesting that they constitute a single species. Morphological observations suggested that lineage II is Taenia crocutae, but the other lineages were morphologically inconsistent with known species, suggesting the involvement of two new species. A phylogenetic tree of Taenia spp. was reconstructed by the maximum likelihood method using all protein-coding genes of their mitochondrial genomes. The tree clearly demonstrated that T. crocutae is sister to T. saginata and T. asiatica, whereas T. solium was confirmed to be sister to the brown bear tapeworm, Taenia arctos. The tree also suggested that T. solium and T. arctos are related to two species of Taenia in hyenas, corresponding to lineages I + IV and III. These results may partially support the African origin of human-infecting Taenia spp., but there remains a possibility that host switching of Taenia to hominins was not confined to Africa. Additional taxa from African carnivores are needed for further testing of the “Out of Africa” hypothesis of Taenia in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号