首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1086篇
  免费   33篇
  国内免费   48篇
  2023年   9篇
  2022年   22篇
  2021年   18篇
  2020年   16篇
  2019年   27篇
  2018年   22篇
  2017年   20篇
  2016年   23篇
  2015年   16篇
  2014年   35篇
  2013年   79篇
  2012年   29篇
  2011年   47篇
  2010年   44篇
  2009年   60篇
  2008年   56篇
  2007年   56篇
  2006年   40篇
  2005年   63篇
  2004年   49篇
  2003年   39篇
  2002年   48篇
  2001年   26篇
  2000年   31篇
  1999年   22篇
  1998年   20篇
  1997年   23篇
  1996年   16篇
  1995年   25篇
  1994年   19篇
  1993年   13篇
  1992年   18篇
  1991年   7篇
  1990年   12篇
  1989年   4篇
  1988年   6篇
  1987年   11篇
  1986年   11篇
  1985年   10篇
  1984年   13篇
  1983年   12篇
  1982年   13篇
  1981年   9篇
  1980年   8篇
  1979年   10篇
  1978年   8篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1167条查询结果,搜索用时 27 毫秒
91.
This historical minireview describes basic lines of progress in our understanding of the functional pattern of photosynthetic water oxidation and the structure of the Photosystem II core complex. After a short introduction into the state of the art about 35 years ago, results are reviewed that led to identification of the essential cofactors of this process and the kinetics of their reactions. Special emphasis is paid on the flash induced oxygen measurements performed by Pierre Joliot (in Paris, France) and Bessel Kok (Baltimore, MD) and their coworkers that led to the scheme, known as the Kok-cycle. These findings not only unraveled the reaction pattern of oxidation steps leading from water to molecular oxygen but also provided the essential fingerprint as prerequisite for studying individual redox reactions. Starting with the S. Singer and G. Nicolson model of membrane organization, attempts were made to gain information on the structure of the Photsystem II complex that eventually led to the current stage of knowledge based on the recently published X-ray crystal structure of 3.8 A resolution in Berlin (Germany).With respect to the mechanism of water oxidation, the impact of Gerald T. Babcock's hydrogen abstractor model and all the considerations of electron/proton transfer coupling are outlined. According to my own model cosiderations, the protein matrix is not only a 'cofactor holder' but actively participates by fine tuning via hydrogen bond networks, playing most likely an essential role in water substrate coordination and in oxygen-oxygen bond formation as the key step of the overall process.  相似文献   
92.
Bacterial strain Rhodococcus erythropolis K2-3 can cleave theether bond of the phenoxybutyrate herbicides, i.e., 4-(2,4-dichlorophenoxy)butyrate(2,4-DB) and 4-(4-chloro-2-methylphenoxy)butyrate (MCPB), by anenzyme system that is constitutively expressed. The enzyme(s) involved were investigated in this study. The rate ofdisappearance of 2,4-DB determined in a whole cell assay amounted to0.6 mmol/h ¶ gdry mass.Carbon monoxide difference spectra of dithionite-reduced wholecells and crude cell extracts suggested that strain K2-3 contains a soluble cytochrome P450(P450), named P450PB-1. The addition of various phenoxybutyrate substrates to crude cell extracts resulted in typical difference spectra following the type I pattern ofsubstrate binding with P450. The rate of 2,4-DB cleavage was reduced by inhibitors of P450: 5 mM metyrapone and carbon monoxide at a CO/O2 ratio of 10 reduced the activity by about 20%, and 70%, respectively. The ether cleaving activity completely disappearedafter disruption of the cells and could not be detected in crude extracts. To elucidate theenzymatic basis of this reaction, P450 was partially purified. With the resulting enzyme preparation,2,4-DB cleavage activity was re-established, becoming measurable after the addition of eitherphenazine methosulfate or ferredoxin and ferredoxin/NADP oxidoreductase from spinach. We detected no activities attributable to -ketoglutarate-dependent dioxygenase orNAD(P)H-dependent monooxygenase. These results collectively indicatethat cleavage of the ether bond of phenoxybutyrate herbicides is catalyzed by P450-mediated activityin this strain. One of the products derived from this reaction is dichlorophenol, and comparativechromatographic analyses suggest that the other product is a C4-carbonicacid, most likely succinic semialdehyde/succinate.  相似文献   
93.
94.
Nuclear apoptosis induced by isolated mitochondria   总被引:2,自引:0,他引:2  
Jiang ZF  Zhao Y  Hong X  Zhai ZH 《Cell research》2000,10(3):221-232
We isolated and purified mitochondria from mouse livers and spinach leaves.When added into egg extracts of Xenopus laevis,they caused nuclei of mouse liver to undergo apoptotic changes.Chromatin condensation,margination and DNA ladder were observed.After incubating isolated mitochondria in some hypotonic solutions,and centrifuging these mixtures at mgh speed,we got mitochondrial supernatants.It was found that in the absence of cytosolic factor,the supernatant alone was able to induce apoptotic changes in nuclei.The effective components were partly of protein.DNA fragmentation was partly inhibited by caspase inhibitors AC-DEVD-CHO and AC-YVAD-CHO.Meanwhile,caspase inhibitors fully blocked chromatin condensation.Primary characterization of the nuclear endonuclease(s) induced by mitochondrial supernatants was also conducted.It was found that this endonuclease is different from endonuclease G,cytochrome c-induced nuclease,or Ca^2 -activated endonuclease.  相似文献   
95.
L-Propionylcarnitine, a propionyl ester of L-carnitine, increases the intracellular pool of L-carnitine. It exhibits a high affinity for the enzyme carnitine acetyltransferase (CAT) and, thus, is readily converted into propionyl-coenzyme A and free carnitine. It has been reported that L-propionylcarnitine possesses a protective action against heart ischemia–reperfusion injury; however, the antioxidant mechanism is not yet clear. L-Propionylcarnitine might reduce the hydroxyl radical production in the Fenton system, by chelating the iron required for the generation of hydroxyl radicals. To obtain a better insight into the antiradical mechanism of L-propionylcarnitine, the present research analyzed the superoxide scavenging capacity of L-propionylcarnitine and its effect on linoleic acid peroxidation. In addition, the effect of L-propionylcarnitine against DNA cleavage was estimated using pBR322 plasmid. We found that L-propionylcarnitine showed a dose-dependent free-radical scavenging activity. In fact, it was able to scavenge superoxide anion, to inhibit the lipoperoxidation of linoleic acid, and to protect pBR322 DNA from cleavage induced by H2O2 UV-photolysis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
96.
Unequal cleavage in the early Tubifex embryo   总被引:1,自引:0,他引:1  
Unequal cleavage that produces two blastomeres of different size is a cleavage pattern that many animals in a variety of phyla, particularly in Spiralia, adopt during early development. This cleavage pattern is apparently instrumental for asymmetric segregation of developmental potential, but it is also indispensable for normal embryogenesis in many animals. Mechanically, unequal cleavage is achieved by either simple unequal cytokinesis or by forming a polar lobe at the egg's vegetal pole. In the present paper, the mechanisms for unequal cytokinesis involved in the first three cleavages in the oligochaete annelid Tubifex are reviewed. The three unequal cleavages are all brought about by an asymmetrically organized mitotic apparatus (MA). The MA of the first cleavage is monastral in that an aster is present at one pole of a bipolar spindle but not at the other. This monastral form, which arises as a result of the involvement of a single centrosome in the MA assembly, is both necessary and sufficient for unequal first cleavage. The egg cortex during the first mitosis is devoid of the ability to remodel spindle poles. In contrast to the non-cortical mechanisms for the first cleavage, asymmetry in the MA organization at the second and third cleavages depends solely on specialized properties of the cell cortex, to which one spindle pole is physically connected. A cortical attachment site for the second cleavage spindle is generated de novo at the cleavage membrane resulting from the first cleavage; it is an actin-based, cell contact-dependent structure. The cortical microtubule attachment site for the third cleavage, which functions independently of contact with other cells, is not generated at the cleavage membrane resulting from the second cleavage, but is located at the animal pole; it may originate from the second polar body formation and become functional at the 4-cell stage.  相似文献   
97.
Elly Ordan  Talila Volk 《Fly》2015,9(2):82-85
The formation of functional musculoskeletal system relies on proper connectivity between muscles and their corresponding tendon cells. In Drosophila, larval muscles are born during early embryonic stages, and elongate toward tendons that are embedded within the ectoderm in later. The Slit/Robo signaling pathway had been implicated in the process of muscle elongation toward tendons. Here we discuss our recent findings regarding the critical contribution of Slit cleavage for immobilization and stabilization of the Slit signal on the tendon cells. Slit cleavage produces 2 polypeptides, the N-terminal Slit-N, which is extremely stable, undergoes oligomerization, and associates with the tendon cell surfaces, and the C-terminal Slit-C, which rapidly degrades. Slit cleavage leads to immobilization of Slit signaling on tendons, leading to a short-range repulsion, which eventually arrest further muscle elongation. Robo2, which is co-expressed with Slit by the tendon cells facilitates Slit cleavage. This activity does not require the cytoplasmic signaling domain of Robo2. We suggest that Robo2-dependent Slit cleavage, and the formation of Slit-N oligomers on the tendon cell surfaces direct muscle elongation, and provide a stop signal for the approaching muscle, through binding to Robo and Robo3 receptors expressed by the muscles.  相似文献   
98.
Hyperlipidemia is an independent risk factor for renal disease, and lipid deposition is associated with glomerulosclerosis. The angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis (ACE2-Ang-(1-7)-Mas axis) has been reported to participate in lipid metabolic regulation but its mechanism remains unclear. We hypothesized Ang-(1-7) would reduce lipid uptake in human mesangial cells (HMCs) by regulating the low density lipoprotein receptor–sterol regulatory element binding proteins 2–SREBP cleavage activating protein (LDLr–SREBP2–SCAP) negative feedback system, and improve glomerulosclerosis by regulating the transforming growth factor-β1 (TGF-β1). In this study we found that ACE2 was undetected in HMCs. The administration of LDL caused normal LDLr–SREBPs–SCAP negative feedback effect. Exogenous Ang-(1-7) enhanced this negative feedback effect via down-regulating LDLr, SREBP2, and SCAP expression, and effectively inhibited LDL-induced lipid deposition and cholesterol increases. This enhanced inhibitory effect was reversed by the Mas receptor antagonist A-779. Meanwhile, Ang-(1-7) significantly decreased the high LDL-induced production of TGF-β1, an effect blocked by A-779. Interestingly, HMCs treated with Ang-(1-7) alone activated the TGF-β1 expression. Our results suggested that Ang-(1-7) inhibits LDL accumulation and decreases cholesterol levels via modulating the LDLr–SREBPs–SCAP negative feedback system through the Mas receptor. Moreover, Ang-(1-7) exhibits a dual regulatory effect on TGF-β1 in HMCs.  相似文献   
99.
100.
We report a new procedure to express recombinant human activin A using the methanolic yeast, Pichia pastoris. Optimization of culture procedures has involved comprehensive examination of the effects of culture vessel shape, volume of broth in the induction and expression cultures, methanol concentration, culturing temperature, and pH of the expression cultures. After this optimization, as well as modification of the native cleavage sites, a laboratory scale procedure has been established which routinely produced 2–10 mg/L amounts of this vital growth factor in the highly efficient, eukaryotic yeast system. This system avoids the need to produce this protein and similar TGF‐β proteins in mammalian cell lines which, in addition to being costly, produce many native binding partners of these cystine knot proteins, a factor which can dramatically affect yields of the target protein. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号