首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   896篇
  免费   55篇
  国内免费   27篇
  2024年   1篇
  2023年   12篇
  2022年   14篇
  2021年   8篇
  2020年   19篇
  2019年   45篇
  2018年   53篇
  2017年   43篇
  2016年   27篇
  2015年   21篇
  2014年   72篇
  2013年   57篇
  2012年   27篇
  2011年   55篇
  2010年   13篇
  2009年   50篇
  2008年   44篇
  2007年   31篇
  2006年   27篇
  2005年   28篇
  2004年   29篇
  2003年   22篇
  2002年   24篇
  2001年   15篇
  2000年   15篇
  1999年   15篇
  1998年   16篇
  1997年   12篇
  1996年   17篇
  1995年   7篇
  1994年   17篇
  1993年   12篇
  1992年   24篇
  1991年   9篇
  1990年   10篇
  1989年   13篇
  1988年   11篇
  1987年   7篇
  1986年   11篇
  1985年   10篇
  1984年   3篇
  1983年   8篇
  1982年   5篇
  1981年   3篇
  1980年   12篇
  1978年   1篇
  1977年   3篇
排序方式: 共有978条查询结果,搜索用时 15 毫秒
31.
The temporomandibular (TM) joint is one of the most used joints in the human body, and any defect in this joint has a significant influence on quality of life. The objective of this study was to create a parametric numerical finite element (FE) analysis to compare the effect of surgical techniques used for total TM joint replacement implantation on loading the TM joint on the other side. Our hypothesis is that for the optimal function of all total TM joint replacements used in clinical practice it is crucial to devise a minimally invasive surgical technique, whereby there is minimum resection of masticatory muscles. This factor is more important than the design of the usually used total TM joint replacements. The extent of muscle resection influences the mechanical loading of the whole system. In the parametric FE analyses, the magnitude of the TM joint loading was compared for four different ranges of muscle resections during bite, using an anatomical model. The results obtained from all FE analyses support our hypothesis that an increasing extent of the muscle resection increased the magnitude of the TM joint overloading on the opposite side. The magnitude of the TM joint overloading increased depending on the muscle resection to 235% for bite on an incisor and up to 491% for bite on molars. Our study leads to a recommendation that muscle resection be minimised during replacement implantation and to a proposal that the attachment of the condylar part of the TM joint replacement be modified.  相似文献   
32.
It is always recommended to use more implants for supporting a prosthesis in the immediate loading condition than in the classical two-stage treatment procedure. By means of the finite element (FE) method, the influence of the number of implants used in immediately loaded fixed partial prosthesis (FPP) on the load distribution was investigated, considering the abutment geometry. Two 3D FE models were studied employing four implants to support a FPP in the premaxilla. One model was designed with straight abutments and the other with 20°-angled abutments. The results concerning implant displacements, stresses and strains were compared with those of two implant-supported FPPs, obtained in a previous study. A noticeable reduction in the determined biomechanical bone loading was observed with the use of more implants in supporting an immediately loaded prosthesis. This study confirms that the use of additional numbers of implants in an immediately loaded prosthesis is highly recommended.  相似文献   
33.
Abstract

Magnetic nano-Fe3O4 particles (MNPs), static magnetic field (SMF) and extremely low-frequency altering electric magnetic field (ELFF) were utilized to treat nude mice loading hepatoma Bel-7402 cell lines to investigate the therapeutic values of MNPs combined with ELFF in vivo. Magnetic resonance image (MRI) figures showed that about 98.9% MNPs injected into mice body through tail vein were gathered in tumor focal by SMF directing exposure. Single ELFF and MNPs treatments did not influence mice physiological function obviously. However, gathered MNPs combined with ELFF treatment prolonged mice survival time and inhibited loading tumor cells proliferation significantly compared to other mice groups (p?<?0.05); furthermore, the tumor cells early apoptosis ratio of mice group was significantly higher than other groups (p?<?0.05), and ELFF combined with gathered MNPs treatment improved tumor cells early apoptosis associated with Bcl group protein expression: Bax protein expression was higher than Bcl-2 and the combined treatment improved cells Heat shock protein-27 (Hsp-27) expression which could protect cells avoiding early apoptosis. The possible mechanism that this kind of combination inducing more cells into early apoptosis could be due to ELFF exposure influencing cells ion metabolism, MNPs strengthening the effects, and the ELFF vibrating MNPs to generate extra heat and activate cellular heat shock signal channel.  相似文献   
34.
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.  相似文献   
35.
Abstract

The characterization of two liposomal formulations of boronated DNA-interacting agents has been performed. It is shown that the two boronated drugs, WSA-Water Soluble Acridine and WSP-Water Soluble Phenantridine, can be encapsulated within unilamellar sterically stabilized liposomes with high drug-to-lipid ratios (up to 0.50:1 (mol:mol)), using transmembrane pH gradients. The steric stabilization of the liposomes was accomplished by the addition of DSPE-PEG(2000) (PEG-lipid) to DSPC/Cho lipid mixtures and the composition used was DSPC: Cho: DSPE-PEG 55:40:5 (moI%). The loading of the drugs resulted in drug precipitation in the liposomal aqueous core as observed by cryo-transmission electron microscopy (c-TEM). Moreover, it is shown that when pH gradients across the bilayer were used for remote loading of WSP or when ammonium sulfate gradients were used for remote loading of WSA, the formation of small bilayer fragments (discs) was induced. We present compelling evidence that the formation of discs is a consequence of precipitate growth in the liposomal interior. The precipitate growth causes some of the liposomes to rupture resulting in the above mentioned disc-formation and a substantial decrease in trapping efficiency. The in vitro stability of the drug loaded liposomes was excellent, both in buffer and in 25% human serum. For most of the formulations, the release of the drugs was below or around 10% after 24 hours at 37oC. Furthermore, the influence of initial internal pH and internal buffering capacity on release properties of WSA and WSP were investigated. It is shown that the release profiles of the drugs can be controlled, to a large extent, by varying the composition of the internal liposomal aqueous phase.  相似文献   
36.
Dynamic loading has emerged as an important part of cartilage tissue engineering strategies for enhancing tissue production and producing cartilage with functionally competent mechanical properties. As patients in need of cartilage span a range of age groups, questions arise as to the role of age in a cell's ability to respond to dynamic loading. Therefore, this study's goal was to characterize age‐related anabolic and catabolic responses of chondrocytes to dynamic compressive loading. Bovine chondrocytes isolated from juvenile (3‐week‐old) and adult (2‐ to 3‐year‐old) donors were encapsulated in poly(ethylene glycol) hydrogels and subjected to dynamic loading applied intermittently in a sinusoidal waveform at 1 or 0.3 Hz with 5 or 10% amplitude strain up to 2 weeks. Loading significantly enhanced total sulfated glycosaminoglycan (sGAG) production by 220% for juvenile chondrocytes with 0.3 Hz/5% loading and by 88% for adult chondrocytes with 1 Hz/5% loading, while all other loading regimes did not affect or inhibited total sGAG production. Contrarily, deposition of larger matrix molecules of aggrecan and collagen II was either not affected or inhibited by loading. Collagen VI deposition was significantly upregulated by loading but only in adult chondrocytes and under different loading regimes (1 Hz/10% and 0.3 Hz/5%) when compared to total sGAGs. Both cell populations displayed catabolic activity, which appeared to be stimulated by loading. Taken together, findings from this study suggest that loading differentially regulates matrix synthesis and the response is highly dependent on donor age. Biotechnol. Bioeng. 2013; 110: 2046–2057. © 2013 Wiley Periodicals, Inc.  相似文献   
37.
Experimental analyses directly inform how an anatomical feature or complex functions during an organism's lifetime, which serves to increase the efficacy of comparative studies of living and fossil taxa. In the mammalian skull, food material properties and feeding behaviour have a pronounced influence on the development of the masticatory apparatus. Diet‐related variation in loading magnitude and frequency induce a cascade of changes at the gross, tissue, cellular, protein and genetic levels, with such modelling and remodelling maintaining the integrity of oral structures vis‐à‐vis routine masticatory stresses. Ongoing integrative research using rabbit and rat models of long‐term masticatory plasticity offers unique insight into the limitations of functional interpretations of fossilised remains. Given the general restriction of the palaeontological record to bony elements, we argue that failure to account for the disparity in the hierarchical network of responses of hard versus soft tissues may overestimate the magnitude of the adaptive divergence that is inferred from phenotypic differences. Second, we note that the developmental onset and duration of a loading stimulus associated with a given feeding behaviour can impart large effects on patterns of intraspecific variation that can mirror differences observed among taxa. Indeed, plasticity data are relevant to understanding evolutionary transformations because rabbits raised on different diets exhibit levels of morphological disparity comparable to those found between closely related primate species that vary in diet. Lastly, pronounced variation in joint form, and even joint function, can also characterise adult conspecifics that differ solely in age. In sum, our analyses emphasise the importance of a multi‐site and hierarchical approach to understanding determinants of morphological variation, one which incorporates critical data on performance.  相似文献   
38.
Rib fracture is one of the most common thoracic injuries in vehicle traffic accidents that can result in fatalities associated with seriously injured internal organs. A failure model is critical when modelling rib fracture to predict such injuries. Different rib failure models have been proposed in prediction of thorax injuries. However, the biofidelity of the fracture failure models when varying the loading conditions and the effects of a rib fracture failure model on prediction of thoracic injuries have been studied only to a limited extent. Therefore, this study aimed to investigate the effects of three rib failure models on prediction of thoracic injuries using a previously validated finite element model of the human thorax. The performance and biofidelity of each rib failure model were first evaluated by modelling rib responses to different loading conditions in two experimental configurations: (1) the three-point bending on the specimen taken from rib and (2) the anterior–posterior dynamic loading to an entire bony part of the rib. Furthermore, the simulation of the rib failure behaviour in the frontal impact to an entire thorax was conducted at varying velocities and the effects of the failure models were analysed with respect to the severity of rib cage damages. Simulation results demonstrated that the responses of the thorax model are similar to the general trends of the rib fracture responses reported in the experimental literature. However, they also indicated that the accuracy of the rib fracture prediction using a given failure model varies for different loading conditions.  相似文献   
39.
In this work, a methodology is demonstrated to engineer gas diffusion electrodes for nonprecious metal catalysts. Highly active transition metal phosphides are prepared on carbon‐based gas diffusion electrodes with low catalyst loadings by modifying the O/C ratio at the surface of the electrode. These nonprecious metal catalysts yield extraordinary performance as measured by low overpotentials (51 mV at ?10 mA cm?2), unprecedented mass activities (>800 A g?1 at 100 mV overpotential), high turnover frequencies (6.96 H2 s?1 at 100 mV overpotential), and high durability for a precious metal‐free catalyst in acidic media. It is found that a high O/C ratio induces a more hydrophilic surface directly impacting the morphology of the CoP catalyst. The improved hydrophilicity, stemming from introduced oxyl groups on the carbon electrode, creates an electrode surface that yields a well‐distributed growth of cobalt electrodeposits and thus a well‐dispersed catalyst layer with high surface area upon phosphidation. This report demonstrates the high‐performance achievable by CoP at low loadings which facilitates further cost reduction, an important part of enabling the large‐scale commercialization of non‐platinum group metal catalysts. The fabrication strategies described herein offer a pathway to lower catalyst loading while achieving high efficiency and promising stability on a 3D electrode.  相似文献   
40.
Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm?1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号