首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1638篇
  免费   83篇
  国内免费   18篇
  2023年   6篇
  2022年   14篇
  2021年   9篇
  2020年   16篇
  2019年   38篇
  2018年   48篇
  2017年   19篇
  2016年   26篇
  2015年   34篇
  2014年   55篇
  2013年   123篇
  2012年   42篇
  2011年   90篇
  2010年   89篇
  2009年   95篇
  2008年   107篇
  2007年   103篇
  2006年   79篇
  2005年   95篇
  2004年   61篇
  2003年   43篇
  2002年   37篇
  2001年   22篇
  2000年   16篇
  1999年   21篇
  1998年   20篇
  1997年   30篇
  1996年   20篇
  1995年   35篇
  1994年   31篇
  1993年   24篇
  1992年   13篇
  1991年   18篇
  1990年   15篇
  1989年   12篇
  1988年   9篇
  1987年   12篇
  1986年   6篇
  1985年   11篇
  1984年   41篇
  1983年   31篇
  1982年   35篇
  1981年   22篇
  1980年   17篇
  1979年   22篇
  1978年   10篇
  1977年   6篇
  1975年   3篇
  1973年   3篇
  1971年   2篇
排序方式: 共有1739条查询结果,搜索用时 234 毫秒
101.
The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1? radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA? formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430?nm during the S-state cycle.  相似文献   
102.
Transport and metabolization of iron bound to the fungal siderophore rhizoferrin was analyzed by transport kinetics, Mössbauer and EPR spectroscopy. Saturation kinetics (v max=24.4 pmol/(mg min), K m=64.4M) and energy dependence excluded diffusion and provided evidence for a rhizoferrin transport system in M. smegmatis. Based on the spectroscopic techniques indications for intracellular presence of the ferric rhizoferrin complex were found. This feature could be of practical importance in the search of novel drugs for the treatment of mycobacterial infections. EPR and Mössbauer spectroscopy revealed different ferritin mineral cores depending on the siderophore iron source. This finding was interpreted in terms of different protein shells, i.e. two types of ferritins.  相似文献   
103.
104.
A procedure for estimating in vivo redox status using EPR and a hydrogen peroxide (H2O2)-dependent spin probe method is described. The mechanism of decreasing spin clearance in the selenium-deficient (SeD) rat is discussed. The in vivo decay constant of the nitroxyl spin probe in the liver region of SeD rats appeared to be slightly lower that of the selenium-adequate control (SeC) group, and was significantly smaller than that of normal rats. Bile H2O2 levels in normal rats were significantly lower than those in SeD rats. The in vivo decay constant of the spin probe in SeD rats depended on the bile H2O2 level. Furthermore, H2O2 was detected in the bile in all SeD rats, whereas bile H2O2 could be detected in only half of the normal rats. It was found that the in vivo decay constant of the spin probe in normal rats also depended on whether bile H2O2 was detected or not. In vivo decay constants were smaller in rats subjected to the surgical operation than in the nonoperated groups. The EPR signal of the nitroxyl radical in the liver homogenate was increased by addition of H2O2, which was administered 30 min before the rat was killed. It appears that H2O2 can oxidize the hydroxylamine formed following reduction of the spin probe in the liver.  相似文献   
105.
The 46-kD enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the condensation of shikimate-3-phosphate (S3P) and phosphoenolpyruvate to form EPSP. The reaction is inhibited by N-(phosphonomethyl)-glycine (Glp), which, in the presence of S3P, binds to EPSP synthase to form a stable ternary complex. We have used solid-state NMR and molecular modeling to characterize the EPSP synthase-S3P-Glp ternary complex. Modeling began with the crystal coordinates of the unliganded protein, published distance restraints, and information from the chemical modification and mutagenesis literature on EPSP synthase. New inter-ligand and ligand-protein distances were obtained. These measurements utilized the native (31)P in S3P and Glp, biosynthetically (13)C-labeled S3P, specifically (13)C and (15)N labeled Glp, and a variety of protein-(15)N labels. Several models were investigated and tested for accuracy using the results of both new and previously published rotational-echo double resonance (REDOR) NMR experiments. The REDOR model is compared with the recently published X-ray crystal structure of the ternary complex, PDB code 1G6S. There is general agreement between the REDOR model and the crystal structure with respect to the global folding of the two domains of EPSP synthase and the relative positioning of S3P and Glp in the binding pocket. However, some of the REDOR data are in disagreement with predictions based on the coordinates of 1G6S, particularly those of the five arginines lining the binding site. We attribute these discrepancies to substantive differences in sample preparation for REDOR and X-ray crystallography. We applied the REDOR restraints to the 1G6S coordinates and created a REDOR-refined xray structure that agrees with the NMR results.  相似文献   
106.
Objective: Free radicals contribute to the tissue damage caused by ischaemia-reperfusion. The aim of the present study was to investigate whether preoperative antioxidant therapy (allopurinol) affects free radical levels in cerebral venous blood in connection with surgery for carotid artery stenosis.

Materials and methods: Twenty-five patients were randomised into the study. Thirteen were controls and 12 were pretreated with allopurinol the day before surgery. Before, during and after surgery, blood samples were drawn from the ipsilateral jugular vein. Radical levels were measured using the spin trap technique ex vivo using OXANOH as the spin trap. Multivariate statistics were used with Principal Component Analysis and Partial Least Square regression analysis.

Results: Radical levels increased with diabetes, high leukocyte count, high creatinine and a high degree of contralateral stenosis. Radical levels decreased with high age, blood pressure, collateral circulation as well as operation for left-side carotid artery stenosis. After pretreatment with allopurinol, several of the relationships noted in the control group were eliminated, i.e. leukocyte count, side of operation, Betapred pretreatment and collateral circulation.

Conclusions: Radical levels can be determined in connection with surgery for carotid artery stenosis using an ex vivo spin trap method. With preoperative antioxidant therapy the relationships between enhanced radical levels and clinical data, as seen in control subjects, disappeared. This might indicate a beneficial effect of preoperative pretreatment with antioxidants.  相似文献   
107.
Standard methods of characterization of electron paramagnetic resonance (EPR) spectra of spin-labeled biomembranes limit the resolution of lateral heterogeneity to only two or three domain types. This disables examination of the structure—function relationship in complex membranes, which might be composed of a larger number of different domain types. To enable exploration of this kind, a new approach based on analysis of EPR spectra with multi-run, hybrid evolutionary optimization is proposed here. From the multiple runs a quasi-continuous distribution of membrane spectral parameters (order parameter, proportion of spectral component, polarity correction factor, rotational correlation time and broadening constant) can be constructed and presented by a new presentation technique CODE (colored distribution of EPR spectral parameters). Through this the concept of a soft picture of membrane heterogeneity is introduced, in contrast to the standard discrete domain picture. The soft characterization method, established on synthetic spectra, was used to examine the lateral heterogeneity of liposome membranes as well as of membranes of neutrophils from healthy and asthmatic horses. In liposome membranes the determined number of domain types was the same as already established by standard procedures of EPR spectra line-shape interpretation. In membranes of neutrophils a quasi-continuous distribution of membrane domain properties was detected by the new method.  相似文献   
108.
There is general agreement that free radicals are involved in reperfusion injury. Electron paramagnetic resonance (EPR) spectroscopy can be considered as the more suitable technique to directly measure and characterize free radical generation during myocardial ischemia and reperfusion. There are essentially two approaches used in the detection of unstable reactive species: freezing technique and spin traps. The detection of secondary free radicals or ascorbyl free radicals during reperfusion might provide an index of oxidative stress. Spin trapping can also characterize nitric oxide. EPR spectroscopy can provide important data regarding redox state and free radical metabolism but ideally, the spin traps must not interfere with cell or organism function.  相似文献   
109.
The tertiary structure of the pain modulating and anti-opiate neuropeptide, human neuropeptide AF (NPAF) (the sequence is AGEGLNSQFWSLAAPQRF-NH(2)), was determined by (1)H-NMR. The structure of NPAF was determined in two solvent systems, namely 50%/50% trifluoroethanol-d(3)/H(2)O (TFE/H(2)O) and in the cell membrane mimetic micelle, sodium dodecylsulfate-d(25) (SDS). The receptor for NPAF is an orphan G-protein coupled receptor, and the micellar SDS solvent system was used to emulate the cell membrane surface in line with the Cell Membrane Compartments Theory proposed by R. Schwyzer (Biopolymers, 1995, Vol. 37, pp. 5-16). In both solvent systems, NPAF was found to be primarily alpha-helical within the central portion of the molecule, from Asn(6) to Ala(14). The N-terminus was random in both solvent systems. In the SDS solution, the C-terminal tetrapeptide was structured and formed a type I beta-turn, whereas in TFE/H(2)O it was unstructured, showing the importance of the C-terminal tetrapeptide in receptor recognition. NPAF was found to associate with SDS, and was shown to be near the surface of the micelle by spin label studies with 5-doxyl-stearic acid.  相似文献   
110.
This paper describes the validation and application of a simple flask-based (14)C-respirometer system designed to assess mineralisation of (14)C-labelled substrates under defined conditions. Validation of this respirometer system indicated stoichiometric CO(2) trapping up to a maximum of 400 micromol of CO(2) (in a single trap). Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were used to measure growth-linked biodegradation of [(14)C]naphthalene to (14)CO(2). A (14)C activity balance of 101.7+/-8.9% (n=6), after 74 h incubation time and 10 respirometer-opening events, indicated the suitability of the system for monitoring substrate mineralisation. This respirometric apparatus was then successfully applied to assess: (i) the PAH catabolism of microbes in a field contaminated soil, where naphthalene and phenanthrene were rapidly mineralised and (ii) soil-associated organic contaminant bioavailability, where increased soil-phenanthrene contact time resulted in a reduction in phenanthrene mineralisation in the soil. The described respirometer system differs from existing respirometer systems in that the CO(2) trap can be removed and replaced quickly and easily. The system is efficient, reproducible, adaptable to many situations, easy to construct and simple to use, it therefore affords advantages over existing systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号