首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2394篇
  免费   35篇
  国内免费   179篇
  2023年   6篇
  2022年   14篇
  2021年   13篇
  2020年   29篇
  2019年   30篇
  2018年   36篇
  2017年   28篇
  2016年   24篇
  2015年   33篇
  2014年   339篇
  2013年   248篇
  2012年   208篇
  2011年   244篇
  2010年   222篇
  2009年   316篇
  2008年   157篇
  2007年   93篇
  2006年   61篇
  2005年   65篇
  2004年   61篇
  2003年   54篇
  2002年   31篇
  2001年   21篇
  2000年   23篇
  1999年   18篇
  1998年   23篇
  1997年   18篇
  1996年   14篇
  1995年   18篇
  1994年   18篇
  1993年   14篇
  1992年   8篇
  1991年   14篇
  1990年   12篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   4篇
  1985年   6篇
  1984年   17篇
  1983年   7篇
  1982年   14篇
  1981年   7篇
  1980年   3篇
  1979年   8篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
排序方式: 共有2608条查询结果,搜索用时 31 毫秒
991.
N-acetyl tyrosine (NAT) is hydroxylated by mushroom tyrosinase and the N-acetyl dopa formed is oxidized by the enzyme to N-acetyl dopaquinone (λmax= 390 ± 10 nm). H2O2 and NH2OH each shortened the lag period of NAT hydroxylation by the enzyme. H2O2 had an effect on the changes with time in the spectrum of product(s) formed and on the spectrum of the final product(s) obtained when NAT was hydroxylated by mushroom tyrosinase, in a manner suggesting that H2O2 converts N-acetyl dopaquinone to a pink-violet product(s) (λmax= 490 nm), whereas such a product(s) was not formed in the absence of H2O2. A pink-violet product(s) (λmax 490 ± 20 nm) was also formed when NAT was hydroxylated by mushroom tyrosinase in the presence of NH2OH or para amino benzoic acid (PABA), probably as a result of an interaction between N-acetyl dopaquinone and NH2OH or PABA forming mono- or di-oximes. Kojic acid (5-hydroxy-2-hydroxymethyl)-4H-pyran-4-one) inhibited effectively the rate of NAT hydroxylation by mushroom tyrosinase in the absence or presence of H2O2. When NAT was oxidized by the enzyme in the absence of kojic acid, N-acetyl dopaquinone was formed at once and a shoulder at 490–530 nm appeared later. Under identical conditions but in the presence of kojic acid, a yellow product(s), characterized by a peak at 320±10 nm, was detected, suggesting that N-acetyl dopaquinone oxidizes kojic acid to the yellow product(s). Maltol(3-hydroxy-2-methyl-4H-pyran-4-one), a γ-pyrone derivative structurally related to kojic acid, also inhibited the rate of NAT hydroxylation by mushroom tyrosinase. The addition of maltol at the plateau phase of the reaction resulted in an immediate decline in absorbance at 400 nm, suggesting that maltol conjugates with N-acetyl dopaquinone, yielding a product(s) characterized by a lower extinction coefficient at 400 nm than that of N-acetyl dopaquinone alone. The final brown-red product(s) formed when NAT was hydroxylated by mushroom tyrosinase was bleached in the presence of ascorbic acid or H2O2.  相似文献   
992.
Abstract: A new brain enzyme (tentatively named protein kinase X), which catalyzes protamine phosphorylation modulated by S-100, was reported recently. An endogenous substrate protein (Mr= 19K) for protein kinase × was isolated from brain by means of S-100-Sepharose 4B affinity chromatography. S-100, but not calmodulin, promoted phosphorylation of the 19K Mr protein in a Ca2+-independent manner, and this reaction was inhibited by gossypol. The substrate protein, localized in the particulate fraction, was present at a much higher level in brain from adult than neonatal rats (2-day-old), a developmental change similar to that seen for protein kinase X. It is suggested that a protein phosphorylation system modulated by S-100 exists in brain, and that this process may be involved in regulation of certain neural functions.  相似文献   
993.
Active site substituted Cd(II) horse liver alcohol dehydrogenase has been studied by Perturbed Angular Correlation of Gamma rays Spectroscopy during turnover conditions for benzaldehyde and 4-trans-(N,N-dimethylamino)cinnamaldehyde. The ternary complex between alcohol dehydrogenase NAD+ and Cl, and the binary complex between alcohol dehydrogenase and orthophenanthroline have also been studied. The Nuclear Quadrupole Interaction parameters have been interpreted in terms of different coordination geometries for Cd(II) in the catalytic zinc site of the enzyme. Calculation of the nuclear quadrupole interaction for cadmium in the catalytic site of the enzyme with and without coenzyme, based upon the four coordinated geometries determined from X-ray diffraction, agrees with the experimentally determined values. The ternary complexes between enzyme, NAD+ and either Cl or trifluoroethanol and the binary complex between enzyme and orthophenanthroline have almost identical spectral parameters which are not consistent with a four coordinated geometry, but are consistent with a five coordinated geometry. The nonprotein ligands for the ternary complex with trifluoroethanol are suggested to be an alkoxide group and a water molecule. The Nuclear Quadrupole Interaction parameters for the productive ternary complex between enzyme, NADH and an aldehyde is consistent with the four coordinated geometry predicted from X-ray diffraction data having the carbonyl group of the aldehyde substituting the water molecule as ligand to the metal.Abbreviations LADH Horse liver alcohol dehydrogenase - H4Zn2LADH derivative of LADH free of zinc in the catalytic site - 111CdZn2LADH derivative of LADH with 111Cd (carrier free) in the catalytic site - Cd2Zn2LADH derivative of LDH with 2 mole of Cd(II) per mole LADH in the catalytic site - PAC pertubed angular correlation of gamma rays - NQI Nuclear quadrupole interaction - AOM Angular overlap model - trifluoroethanol 2,2,2-trifluoroethanol - DACA trans-4-(N,N-dimethylamino)cinnamaldehyde - NAD+ and NADH oxidized and reduced nicotinamide adenine dinucleotide - NADH2 reduced 1,4,5,6-tetrahydronicotinamide adenine dinucleotide The experimental work was carried out at the Niels Bohr Institute Risø, 4000 Roskilde and Blegdamsvej 19, 2100 Copenhagen, Denmark Offprint requests to: R. Bauer  相似文献   
994.
A new strictly anaerobic, gram-negative, nonsporeforming bacterium, Strain PerGlx1, was enriched and isolated from marine sediment samples with glyoxylate as sole carbon and energy source. The guanineplus-cytosine content of the DNA was 44.1±0.2 mol %. Glyoxylate was utilized as the only substrate and was stoichiometrically degraded to carbon dioxide, hydrogen, and glycolate. An acetyl-CoA and ADP-dependent glyoxylate converting enzyme activity, malic enzyme, and pyruvate synthase were found at activities sufficient for growth (0.25 U x mg protein-1). These findings allow to design a new degradation pathway for glyoxylate: glyoxylate is condensed with acetyl-CoA to form malyl-CoA; the free energy of the thioester linkage in malyl-CoA is conserved by substrate level phosphorylation. Part of the electrons released during glyoxylate oxidation to CO2 reduce a small fraction of glyoxylate to glycolate.  相似文献   
995.
Summary Gluconobacter oxydans contains pyrroloquinoline quinone-dependent glucose dehydrogenase (GDH). Two isogenic G. oxydans strains, P1 and P2, which differ in their substrate specificity with respect to oxidation of sugars have been analysed. P1 can oxidize only d-glucose, whereas P2 is also capable of the oxidation of the disaccharide maltose. To investigate the nature of this maltose-oxidizing property we cloned the gene encoding GDH from P2. Expression of P2 gdh in P1 enables the latter strain to oxidize maltose, indicating that a mutation in the P2 gdh gene is responsible for the change in substrate specificity. This mutation could be ascribed to a 1 by substitution resulting in the replacement of His 787 by Asn.  相似文献   
996.
The infection rate of the first stage larval nematodes, Elaphostrongylus rangiferi, was studied experimentally, using the juvenile snail Arianta arbustorum as intermediate host. The nematode showed a linear, fivefold increase in infection rate within the temperature range of 4 to 28 C. The snails were exposed to the larval nematodes on three different substrates. The highest infection rate was recorded when snails were exposed in tap water and significantly slower infection rates were obtained when either lettuce or soil was used as the substrate. First stage larvae of E. rangiferi were infective for at least 2 months when stored at 12 C. Throughout this period, the infection rate showed a significant decline, while the motility of the larvae remained unchanged.  相似文献   
997.
Concanavalin A-induced proliferation of rat T-lymphocytes is completely inhibited by 10?5 M pyrazofurin, a potent inhibitor of pyrimidine de novo synthesis, as judged by cell viability and [3H]thymidine incorporation. Proliferation is completely restored by 5 × 10?5 M uridine. Cytidine, deoxycytidine, deoxyuridine and thymidine 10 × 10?5 M each, fail to re-establish proliferation but produce an isotropic dilution of [3H]thymidine uptake in DNA. Bases (cytosine, uracil and thymine) neither restore proliferation nor induce isotopic dilution. The unexpected inability of cytidine to reverse de novo pyrimidine synthesis inhibition suggests a lack of cytidine deaminase activity in rat T-lymphocytes. This is confirmed by a direct sensitive radioisotopic assay (<0.001 nmol.min?1.10?6 cells).  相似文献   
998.
Abstract: The inhibition of type A and B MAO in rat forebrain crude membrane preparation by MD780515. (3-{4-[(3-cyanophenyl)methoxy]phenyl)-5-(methoxymethyl)-2-oxazolidinone Centre de Recherche Delalande, France) has been investigated in vitro with 5-hydroxytryptamine and β-phenylethyl-amine as substrates. The inhibition of the high-affinity binding of [3H]harmaline, a specific marker of type A MAO, was also studied. In the experimental conditions used, MD780515 appeared to be a pure mixed MAO inhibitor (MAOI) of 5-HT deamination, both Km , and Vmax being altered [K1 (Dixon) = Ki , (slope) = 2 nM; Ki (intercept) = 12 nM]. Phenylethylamine oxidation could be considered to be noncompetitively inhibited by MD780515 (Ki (slope) = 78 nM; Ki , (intercept) = 103 nM). Dixon and intercept replots were hyperbolic, suggesting that, at high concentrations, PEA could be deaminated by both forms of MAO. This hypothesis was confirmed by biphasic inhibition curves of 80 μM-PEA obtained when MD7805 15 , clorgyline, harmaline and deprenyl were used as MAOIs. MD780515 was a potent inhibitor (IC50= 1–2 nM) of [3H]harmaline binding. Comparatively, clorgyline, 'cold' harmaline and Lilly 51641 inhibited 3H ligand binding, with IC50 of 5, 7 and 40 nM respectively. In conclusion, MD780515 is a reversible, specific and potent type A MAOI.  相似文献   
999.
The properties of the alkaline lipase activity (EC 3.1.1.3) that was recovered almost completely from a microsomal membrane fraction of 4-d-old rapeseed (Brassica napus L.) cotyledons were studied employing a titrimetric test procedure. The apparent KM was 6.5 mmol l-1, with emulgated sunflower oil as the substrate. The products of triglyceride hydrolysis in vitro were glycerol, free fatty acids, and minor amounts of mono- and diglycerides. Maximum lipase activity depended on the preincubation of the lipolytic membrane fraction in 0.15 mol l-1 NaCl and on the presence of at least 0.1 mol l-1 NaCl in the test mixture. Desoxycholate and up to 0.1 mol l-1 CaCl2 also activated the enzyme while EDTA and detergents such as trito x-100, digitonin, tween 85, and sodium dodecylsulfate were inhibitory. The rapeseed lipase displayed a conspicuous substrate selectivity among different plant triglycerides; the activity was inversely correlated with the oleic acid content of the oils. Water-soluble triacetin and the phospholipid lecithin were not hydrolyzed. Increasing amounts of free fatty acids reduced lipase activity; erucic acid, a major component of rapeseed oil, exhibited the strongest effect, suggesting a possible role in the regulation of lipase activity in vivo. The data demonstrate that the lipolytic membrane fraction houses a triglyceride lipase with properties similar to other plant and animal lipases. It can both qualitatively and quantitatively account for the fat degradation in rapeseed cotyledons. The evidence that provides further reason to acknowledge the membranous appendices of the spherosomes as the intracellular site of lipolysis is discussed.  相似文献   
1000.
The purified isopropylmalate synthase of Alcaligenes eutrophus H 16 reacted with the following -keto acids and acyl-coenzyme A derivatives (in the sequence of decreasing affinities): -ketoisovalerate, -keto-n-valerate, -ketobutyrate and pyruvate; acetyl-CoA, propionyl-CoA, butyryl-CoA. malonyl-CoA, valeryl-CoA, and crotonyl-CoA. -Ketoisocaproate, however, is a strong inhibitor of the enzyme. All reactions catalyzed by isopropylmalate synthase were inhibited to the same extent by the endproduct l-leucine. the substrate saturation curves of -ketoisovalerate or other -keto acids and of acetyl-coenzyme A or other acyl-CoA derivatives had intermediary plateau regions; the Hill coefficient alternated between n H -values higher and lower than 1.0, indicating changes from positive to negative and from negative to positive cooperativity for the substrates. The products, isopropylmalate and free coenzyme A, showed competitive inhibition patterns against both substrates (-ketoisovalerate and acetyl-CoA). Free coenzyme A (1 M) inactivated the enzyme irreversibly. The 3-phosphate of coenzyme A and the free carboxyl group of -ketoisovalerate were involved in optimal binding of these substrates, but 3-dephospho-acetyl-coenzyme A and the methylester of -ketoisovalerate were also converted by this enzyme. A CH3–CH2-grouping of the -keto acids seemed to be necessary for binding this substrate.Abbreviations Used CoA Coenzyme A - Tris Tris(hydroxymethyl)aminomethane hydrochloride - DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - IPM -Isopropylmalate - KIV -Ketoisovalerate Prepared from doctoral thesis of the University of Göttingen 1973  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号