首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1792篇
  免费   70篇
  国内免费   59篇
  2023年   9篇
  2022年   22篇
  2021年   35篇
  2020年   27篇
  2019年   63篇
  2018年   83篇
  2017年   26篇
  2016年   25篇
  2015年   16篇
  2014年   91篇
  2013年   120篇
  2012年   37篇
  2011年   71篇
  2010年   51篇
  2009年   85篇
  2008年   104篇
  2007年   103篇
  2006年   88篇
  2005年   61篇
  2004年   63篇
  2003年   85篇
  2002年   99篇
  2001年   63篇
  2000年   47篇
  1999年   34篇
  1998年   26篇
  1997年   30篇
  1996年   20篇
  1995年   26篇
  1994年   22篇
  1993年   21篇
  1992年   22篇
  1991年   16篇
  1990年   13篇
  1989年   17篇
  1988年   17篇
  1987年   15篇
  1986年   10篇
  1985年   11篇
  1984年   26篇
  1983年   14篇
  1982年   25篇
  1981年   16篇
  1980年   11篇
  1979年   7篇
  1978年   11篇
  1977年   8篇
  1976年   10篇
  1975年   4篇
  1973年   8篇
排序方式: 共有1921条查询结果,搜索用时 46 毫秒
41.
Abstract The kinetic parameters of NH+4-uptake in yeast cells were determined by a method that is based on the following changes in the external NH+4 concentration in cell suspensions by using NADH-dependent glutamate formation from NH+4 and 2-oxoglutarate. The kinetics of the observed NADH oxidation were analyzed by computer and enabled an estimation of V max and K m of the NH+4-uptake system of the cells.  相似文献   
42.
Analysis of the cation composition of growing Mycoplasma mycoides var. Capri indicates that these organisms have a high intracellular K+ concentration (Ki: 200–300 mM) which greatly exceeds that of the growth medium, and a low Na+ concentration (Nai+: 20 mM). Unlike Nai+, Ki+ varies with cell aging.The K+ transport properties studied in washed organisms resuspended in buffered saline solution show that cells maintain a steady and large K+ concentration gradient across their membrane at the expense of metabolic energy mainly derived from glycolysis. In starved cells, Ki+ decreases and is partially compensated by a gain in Na+. This substitution completely reverses when metabolic substrate is added (K+ reaccumulation process). Kinetic analysis of K+ movement in cells with steady K+ level shows that most of K+ influx is mediated by an autologous K+-K+ exchange mechanism. On the other hand, during K+ reaccumulation by K+-depleted cells, a different mechanism (a K+ uptake mechanism) with higher transport capacity and affinity drives the net K+ influx. Both mechanisms are energy-dependent.Ouabain and anoxia have no effect on K+ transport mechanisms; in contrast, both processes are completely blocked by dicyclohexylcarbodiimide, an inhibitor of the Mg2+-dependent ATPase activity.  相似文献   
43.
44.
Leaf wax of a glaucous variety of Poa ampla contains hydrocarbons (5%, C23–C35), esters (9%, C36–C56), free acids (3%, C16–C34), free alcohols (6%, mainly C26); hentriacontane-14,16-dione (14%), 5-oxohentriacontane-14,16-dione (1%); hydroxy β-diketones (56%) and unidentified material (6%). The hydroxy β-diketones, which are more abundant in this wax than in others, were shown by 13C NMR to consist of 4-hydroxy (15%), 5-hydroxy (70%) and 6-hydroxy (15%) hentriacontane-14,16-diones.  相似文献   
45.
The soluble neutral proteinase of human erythrocytes dissociates into constituent subunits of 80k and 30k in the presence of mM concentrations of Ca2+. Similarly the soluble natural inhibitor of this proteinase, of approximate molecular weight 240k, is dissociated into 60k subunits by mM concentrations of Ca2+. Removal of Ca2+ restores the native oligomeric structure of the proteinase and of the natural inhibitor. The formation of the native active enzyme or of the inactive enzyme-inhibitor complex depends on reversible association-dissociation processes mediated by Ca2+ concentration.  相似文献   
46.
Na-, K-, Ba-, and Ca-Y were employed for the separation of fructose and glucose in an adsorption column. Effects of temperature, solvent flow rate, amount of mixture injection, and exchangeable cations on the separation were investigated. Efficiency of separation was used as a criterion to characterize the effectiveness of the separation. The transport and kinetic parameters for the column separation were also presented. From simple pulse experiments and moment analysis, the obtained process information of equilibrium and dynamic parameters might be used to design, operate, and control the separation column. (c) 1992 John Wiley & Sons, Inc.  相似文献   
47.
Nuñas (Thaseolus vulgaris, Fabaceae), commonly called popping beans, are traditionally grown in the Andean highlands of South America, and are consumed as a snack food after a quick toasting process. Proximate analysis of their nutritive value revealed that nunas have a higher content of starch, amylose, and copper than four dry bean varieties and a lower mean content of protein, phosphorous, iron, and boron. The unique texture and taste of nuñas may be related to their high starch content. Antinutritional factors such as lectins were higher in raw and boiled nuña samples than in toasted nuñas, while tannin levels did not change from raw to toasted treatments. Overall in-vitro digestibility was slightly lower for toasted nunas than boiled dry bean.  相似文献   
48.
In the present study we used established methods to obtain apical membrane vesicles from the toad urinary bladder and incorporated these membrane fragments to solvent-free planar lipid bilayer membranes. This resulted in the appearance of a macroscopic conductance highly sensitive to the diuretic amiloride added to the cis side. The blockage is voltage dependent and well described by a model which assumes that the drug binds to sites in the channel lumen. This binding site is localized at about 15% of the electric field across the membrane. The apparent inhibition constant (K(0)) is equal to 0.98 microM. Ca2+, in the micromolar range on the cis side, is a potent blocker of this conductance. The effect of the divalent has a complex voltage dependence and is modulated by pH. At the unitary level we have found two distinct amiloride-blockable channels with conductances of 160 pS (more frequent) and 120 pS. In the absence of the drug the mean open time is around 0.5 sec for both channels and is not dependent on voltage. The channels are cation selective (PNa/PCl = 15) and poorly discriminate between Na+ and K+ (PNa/PK = 2). Amiloride decreases the lifetime in the open state of both channels and also the conductance of the 160-pS channel.  相似文献   
49.
Summary Cell-attached patch-clamp recordings from Ehrlich ascites tumor cells reveal nonselective cation channels which are activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette or after osmotic cell swelling. The channel activation does not occur instantaneously but within a time delay of 1/2 to 1 min. The channel is permeable to Ba2+ and hence presumably to Ca2+. It seems likely that the function of the nonselective, stretch-activated channels is correlated with their inferred Ca2+ permeability, as part of the volume-activated signal system. In isolated insideout patches a Ca2+-dependent, inwardly rectifying K+ channel is demonstrated. The single-channel conductance recorded with symmetrical 150 mm K+ solutions is for inward current estimated at 40 pS and for outward current at 15 pS. Activation of the K+ channel takes place after an increase in Ca2+ from 10–7 to 10–6 m which is in the physiological range. Patch-clamp studies in cellattached mode show K+ channels with spontaneous activity and with characteristics similar to those of the K+ channel seen in excised patches. The single-channel conductance for outward current at 5 mm external K+ is estimated at about 7 pS. A K+ channel with similar properties can be activated in the cellattached mode by addition of Ca2+ plus ionophore A23187. The channel is also activated by cell swelling, within 1 min following hypotonic exposure. No evidence was found of channel activation by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches of stretch-activated, nonselective cation channels and K+ channels in the presence of 3 mm Ca2+ in the pipette suggests a close spatial relationship between the two channels. In excised inside-out patches (with NMDG chloride on both sides) a small 5-pS chloride channel with low spontaneous activity is observed. The channel activity was not dependent on Ca2+ and could not be activated by membrane stretch (suction). In cell-attached mode singlechannel currents with characteristics similar to the channels seen in isolated patches are seen. In contrast to the channels seen in isolated patches, the channels in the cell-attached mode could be activated by addition of Ca2+ plus ionophore A23187. The channel is also activated by hypotonic exposure with a single-channel conductance at 7 pS (or less) and with a time delay at about 1 min. The number of open channels during RVD is estimated at 80 per cell. Two other types of Cl channels were regularly recorded in excised inside-out patches: a voltage-activated 400-pS channel and a 34-pS Cl channel which show properties similar to the Cl channel in the apical membrane in human airway epithelial cells. There is no evidence for a role in RVD for either of these two channels.  相似文献   
50.
ATP-dependent Sr2+ transport was examined in vitro using basolateral membrane (BLM) vesicles isolated from rat renal cortex to clarify the discrimination mechanisms between strontium (Sr) and calcium (Ca) in renal tubules during reabsorption. ATP-dependent Sr2+ uptake and Ca2+ uptake were observed in renal BLM vesicles and were inhibited by vanadate. Hill plots indicate similar kinetic behavior for Ca2+ and Sr2+ uptake. The apparentK m andV max of ATP-dependent Sr2+ uptake were both higher than those for Ca2+ uptake. ATP-dependent Sr2+ uptake by BLM vesicles diminished in the presence of 0.1 μM Ca2+ and was more markedly inhibited by 1 μM Ca2+. Hill plots of Sr2+ uptake data with and without 0.1 μM Ca2+ showed that the cooperative behavior of Sr2+ uptake was not changed by Ca2+. In the presence of 0.1 μM Ca2+, the affinity of the transport system for Sr2+ and the velocity of Sr2+ uptake in the BLM were both decreased. However, the rate of Ca2+ uptake was not diminished by Sr2+ concentrations of <1.6 μM. These results suggest that Ca2+ is preferentially transported in the renal cortex BLM when Ca2+ and Sr2+ are present at the same time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号