首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18268篇
  免费   1813篇
  国内免费   2566篇
  2024年   90篇
  2023年   433篇
  2022年   483篇
  2021年   650篇
  2020年   730篇
  2019年   871篇
  2018年   714篇
  2017年   859篇
  2016年   816篇
  2015年   790篇
  2014年   985篇
  2013年   1448篇
  2012年   794篇
  2011年   998篇
  2010年   828篇
  2009年   1055篇
  2008年   1153篇
  2007年   1061篇
  2006年   963篇
  2005年   775篇
  2004年   714篇
  2003年   623篇
  2002年   516篇
  2001年   468篇
  2000年   468篇
  1999年   409篇
  1998年   321篇
  1997年   278篇
  1996年   242篇
  1995年   226篇
  1994年   219篇
  1993年   191篇
  1992年   176篇
  1991年   172篇
  1990年   138篇
  1989年   121篇
  1988年   99篇
  1987年   98篇
  1986年   106篇
  1985年   67篇
  1984年   79篇
  1983年   64篇
  1982年   95篇
  1981年   53篇
  1980年   67篇
  1979年   37篇
  1978年   35篇
  1977年   15篇
  1976年   14篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
891.
Long‐distance migration is a common phenomenon across the animal kingdom but the scale of annual migratory movements has made it difficult for researchers to estimate survival rates during these periods of the annual cycle. Estimating migration survival is particularly challenging for small‐bodied species that cannot carry satellite tags, a group that includes the vast majority of migratory species. When capture–recapture data are available for linked breeding and non‐breeding populations, estimation of overall migration survival is possible but current methods do not allow separate estimation of spring and autumn survival rates. Recent development of a Bayesian integrated survival model has provided a method to separately estimate the latent spring and autumn survival rates using capture–recapture data, though the accuracy and precision of these estimates has not been formally tested. Here, I used simulated data to explore the estimability of migration survival rates using this model. Under a variety of biologically realistic scenarios, I demonstrate that spring and autumn migration survival can be estimated from the integrated survival model, though estimates are biased toward the overall migration survival probability. The direction and magnitude of this bias are influenced by the relative difference in spring and autumn survival rates as well as the degree of annual variation in these rates. The inclusion of covariates can improve the model's performance, especially when annual variation in migration survival rates is low. Migration survival rates can be estimated from relatively short time series (4–5 years), but bias and precision of estimates are improved when longer time series (10–12 years) are available. The ability to estimate seasonal survival rates of small, migratory organisms opens the door to advancing our understanding of the ecology and conservation of these species. Application of this method will enable researchers to better understand when mortality occurs across the annual cycle and how the migratory periods contribute to population dynamics. Integrating summer and winter capture data requires knowledge of the migratory connectivity of sampled populations and therefore efforts to simultaneously collect both survival and tracking data should be a high priority, especially for species of conservation concern.  相似文献   
892.
Quantitative models play an increasing role in exploring the impact of global change on biodiversity. To win credibility and trust, they need validating. We show how expert knowledge can be used to assess a large number of empirical species niche models constructed for the British vascular plant and bryophyte flora. Key outcomes were (a) scored assessments of each modeled species and niche axis combination, (b) guidance on models needing further development, (c) exploration of the trade‐off between presenting more complex model summaries, which could lead to more thorough validation, versus the longer time these take to evaluate, (d) quantification of the internal consistency of expert opinion based on comparison of assessment scores made on a random subset of models evaluated by both experts. Overall, the experts assessed 39% of species and niche axis combinations to be “poor” and 61% to show a degree of reliability split between “moderate” (30%), “good” (25%), and “excellent” (6%). The two experts agreed in only 43% of cases, reaching greater consensus about poorer models and disagreeing most about models rated as better by either expert. This low agreement rate suggests that a greater number of experts is required to produce reliable assessments and to more fully understand the reasons underlying lack of consensus. While area under curve (AUC) statistics showed generally very good ability of the models to predict random hold‐out samples of the data, there was no correspondence between these and the scores given by the experts and no apparent correlation between AUC and species prevalence. Crowd‐sourcing further assessments by allowing web‐based access to model fits is an obvious next step. To this end, we developed an online application for inspecting and evaluating the fit of each niche surface to its training data.  相似文献   
893.
Bird ring‐recovery data have been widely used to estimate demographic parameters such as survival probabilities since the mid‐20th century. However, while the total number of birds ringed each year is usually known, historical information on age at ringing is often not available. A standard ring‐recovery model, for which information on age at ringing is required, cannot be used when historical data are incomplete. We develop a new model to estimate age‐dependent survival probabilities from such historical data when age at ringing is not recorded; we call this the historical data model. This new model provides an extension to the model of Robinson, 2010, Ibis, 152, 651–795 by estimating the proportion of the ringed birds marked as juveniles as an additional parameter. We conduct a simulation study to examine the performance of the historical data model and compare it with other models including the standard and conditional ring‐recovery models. Simulation studies show that the approach of Robinson, 2010, Ibis, 152, 651–795 can cause bias in parameter estimates. In contrast, the historical data model yields similar parameter estimates to the standard model. Parameter redundancy results show that the newly developed historical data model is comparable to the standard ring‐recovery model, in terms of which parameters can be estimated, and has fewer identifiability issues than the conditional model. We illustrate the new proposed model using Blackbird and Sandwich Tern data. The new historical data model allows us to make full use of historical data and estimate the same parameters as the standard model with incomplete data, and in doing so, detect potential changes in demographic parameters further back in time.  相似文献   
894.
895.
Forest undergrowth plants are tightly connected with the shady and humid conditions that occur under the canopy of tropical forests. However, projected climatic changes, such as decreasing precipitation and increasing temperature, negatively affect understory environments by promoting light‐demanding and drought‐tolerant species. Therefore, we aimed to quantify the influence of climate change on the spatial distribution of three selected forest undergrowth plants, Dracaena Vand. ex L. species, D. afromontana Mildbr., D. camerooniana Baker, and D. surculosa Lindl., simultaneously creating the most comprehensive location database for these species to date. A total of 1,223 herbarium records originating from tropical Africa and derived from 93 herbarium collections worldwide have been gathered, validated, and entered into a database. Species‐specific Maxent species distribution models (SDMs) based on 11 bioclimatic variables from the WorldClim database were developed for the species. HadGEM2‐ES projections of bioclimatic variables in two contrasting representative concentration pathways (RCPs), RCP2.6 and RCP8.5, were used to quantify the changes in future potential species distribution. D. afromontana is mostly sensitive to temperature in the wettest month, and its potential geographical range is predicted to decrease (up to ?63.7% at RCP8.5). Optimum conditions for D. camerooniana are low diurnal temperature range (6–8°C) and precipitation in the wettest season exceeding 750 mm. The extent of this species will also decrease, but not as drastically as that of D. afromontana. D. surculosa prefers high precipitation in the coldest months. Its potential habitat area is predicted to increase in the future and to expand toward the east. This study developed SDMs and estimated current and future (year 2050) potential distributions of the forest undergrowth Dracaena species. D. afromontana, naturally associated with mountainous plant communities, was the most sensitive to predicted climate warming. In contrast, D. surculosa was predicted to extend its geographical range, regardless of the climate change scenario.  相似文献   
896.
897.
The availability of suitable habitat is a key predictor of the changing status of biodiversity. Quantifying habitat availability over large spatial scales is, however, challenging. Although remote sensing techniques have high spatial coverage, there is uncertainty associated with these estimates due to errors in classification. Alternatively, the extent of habitats can be estimated from ground‐based field survey. Financial and logistical constraints mean that on‐the‐ground surveys have much lower coverage, but they can produce much higher quality estimates of habitat extent in the areas that are surveyed. Here, we demonstrate a new combined model which uses both types of data to produce unified national estimates of the extent of four key habitats across Great Britain based on Countryside Survey and Land Cover Map. This approach considers that the true proportion of habitat per km2 (Zi) is unobserved, but both ground survey and remote sensing can be used to estimate Zi. The model allows the relationship between remote sensing data and Zi to be spatially biased while ground survey is assumed to be unbiased. Taking a statistical model‐based approach to integrating field survey and remote sensing data allows for information on bias and precision to be captured and propagated such that estimates produced and parameters estimated are robust and interpretable. A simulation study shows that the combined model should perform best when error in the ground survey data is low. We use repeat surveys to parameterize the variance of ground survey data and demonstrate that error in this data source is small. The model produced revised national estimates of broadleaved woodland, arable land, bog, and fen, marsh and swamp extent across Britain in 2007.  相似文献   
898.
899.
《Cell reports》2019,26(13):3752-3761.e5
  1. Download : Download high-res image (172KB)
  2. Download : Download full-size image
  相似文献   
900.
Optimization of a bioreactor design can be an especially challenging process. For instance, testing different bioreactor vessel geometries and different impeller and sparger types, locations, and dimensions can lead to an exceedingly large number of configurations and necessary experiments. Computational fluid dynamics (CFD), therefore, has been widely used to model multiphase flow in stirred-tank bioreactors to minimize the number of optimization experiments. In this study, a multiphase CFD model with population balance equations are used to model gas–liquid mixing, as well as gas bubble distribution, in a 50 L single-use bioreactor vessel. The vessel is the larger chamber in an early prototype of a multichamber bioreactor for mammalian cell culture. The model results are validated with oxygen mass transfer coefficient (kLa) measurements within the prototype. The validated model is projected to predict the effect of using ring or pipe spargers of different sizes and the effect of varying the impeller diameter on kLa. The simulations show that ring spargers result in a superior kLa compared to pipe spargers, with an optimum sparger-to-impeller diameter ratio of 0.8. In addition, larger impellers are shown to improve kLa. A correlation of kLa is presented as a function of both the reactor geometry (i.e., sparger-to-impeller diameter ratio and impeller-to-vessel diameter ratio) and operating conditions (i.e., Reynolds number and gas flow rate). The resulting correlation can be used to predict kLa in a bioreactor and to optimize its design, geometry, and operating conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号