首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2421篇
  免费   147篇
  国内免费   303篇
  2024年   3篇
  2023年   16篇
  2022年   43篇
  2021年   38篇
  2020年   34篇
  2019年   51篇
  2018年   35篇
  2017年   67篇
  2016年   84篇
  2015年   69篇
  2014年   94篇
  2013年   99篇
  2012年   76篇
  2011年   103篇
  2010年   100篇
  2009年   210篇
  2008年   199篇
  2007年   208篇
  2006年   216篇
  2005年   161篇
  2004年   151篇
  2003年   113篇
  2002年   78篇
  2001年   71篇
  2000年   69篇
  1999年   54篇
  1998年   47篇
  1997年   47篇
  1996年   35篇
  1995年   40篇
  1994年   32篇
  1993年   33篇
  1992年   13篇
  1991年   26篇
  1990年   23篇
  1989年   23篇
  1988年   14篇
  1987年   12篇
  1986年   11篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   7篇
  1981年   6篇
  1980年   10篇
  1979年   6篇
  1978年   8篇
  1977年   3篇
  1976年   4篇
  1973年   4篇
排序方式: 共有2871条查询结果,搜索用时 203 毫秒
131.
Recent discoveries have suggested the concept that intracellular signals are the sum of multiple, site‐specified subsignals, rather than single, homogeneous entities. In the context of cancer, searching for compounds that selectively block subsignals essential for tumor progression, but not those regulating “house‐keeping” functions, could help in producing drugs with reduced side effects compared to compounds that block signaling completely. The Ras‐ERK pathway has become a paradigm of how space can differentially shape signaling. Today, we know that Ras proteins are found in different plasma membrane microdomains and endomembranes. At these localizations, Ras is subject to site‐specific regulatory mechanisms, distinctively engaging effector pathways and switching‐on diverse genetic programs to generate different biological responses. The Ras effector pathway leading to ERKs activation is also under strict, space‐related regulatory processes. These findings may open a gate for aiming at the Ras‐ERK pathway in a spatially restricted fashion, in our quest for new anti‐tumor therapies.  相似文献   
132.
Questions: We asked several linked questions about phenology and precipitation relationships at local, landscape, and regional spatial scales within individual seasons, between seasons, and between year temporal scales. (1) How do winter and summer phenological patterns vary in response to total seasonal rainfall? (2) How are phenological rates affected by the previous season rainfall? (3) How does phenological variability differ at landscape and regional spatial scales and at season and inter‐annual temporal scales? Location: Southern Arizona, USA. Methods: We compared satellite‐derived phenological variation between 38 distinct 625‐km2 landscapes distributed in the northern Sonoran Desert region from 2000 to 2007. Regression analyses were used to identify relationships between landscape phenology dynamics in response to precipitation variability across multiple spatial and temporal scales. Results: While both summer and winter seasons show increases of peak greenness and peak growth with more precipitation, the timing of peak growth was advanced with more precipitation in winter, while the timing of peak greenness was advanced with more precipitation in summer. Surprisingly, summer maximum growth was negatively affected by winter precipitation. The spatial variations between summer and winter phenology were similar in magnitude and response. Larger‐scale spatial and temporal variation showed strong differences in precipitation patterns; however the magnitudes of phenological spatial variability in these two seasons were similar. Conclusions: Vegetation patterns were clearly coupled to precipitation variability, with distinct responses at alternative spatial and temporal scales. Disaggregating vegetation into phenological variation, spanning value, timing, and integrated components revealed substantial complexity in precipitation‐phenological relationships.  相似文献   
133.
Hypogean habitats are relatively simple exhibiting low diversity, low production and relative constancy of environmental factors, and are therefore appropriate for studying species coexistence in situ. We investigated the coexistence of two closely related, similarly sized orb-weaving spider species, Meta menardi and Metellina merianae, living syntopically in a Slovenian cave. We studied the annual dynamics of both species within a mixed population, and the impact of the ambient temperature, relative humidity, airflow and illumination, and compared their trophic niches to legacy data on prey of both species from 55 caves in Slovenia. We predicted a large overlap in their spatial niches and substantial differences in their temporal and trophic niches. We found that their spatial niches overlap greatly with few exceptions, mostly on the dates of notable meteorological changes in the cave but that their temporal niches differ significantly with r-strategy resembling epigean annual dynamic in M. merianae and a steady low abundance course in M. menardi within the cave. We also found that different predatory strategies significantly segregate their trophic niches: M. merianae uses a typical orb-weaving hunting strategy, while M. menardi combines web hunting with off-web hunting. Our findings suggest that both the diverse dynamics and trophic niches enable the coexistence of M. menardi and M. merianae despite their similar spatial niches, and that M. menardi, in particular, is optimally adapted to the epigean/hypogean ecotone.  相似文献   
134.
冻融作用对土壤温室气体产生与排放的影响   总被引:7,自引:0,他引:7  
土壤冻融交替是中、高纬度和高海拔地区常见的自然现象,土壤在冻融期间会经历一系列物理、化学和生物变化过程。有研究表明,冻融区土壤是温室气体的重要排放源,冻融期土壤温室气体的排放量在全年总排放量中占有重要的份额,尤其是N2O。随着全球气候变暖,部分地区的土壤环境将经受更广泛和频繁的冻融交替作用,这会导致土壤温室气体排放量增加,从而又进一步促进了气候变暖。本文重点概述了冻融作用对土壤温室气体产生与排放的影响及其主要影响机制,并简要提出了目前土壤冻融研究中的一些不足以及今后值得关注和深入研究的科学问题。  相似文献   
135.
Abstract.— The extent and spatial patterns of genetic variation at allozyme markers were investigated within and between diploid and autotetraploid knapweeds (Centaurea jacea L. sensu lato, Asteraceae) at contrasted geographic scales: (1) among populations sampled from a diploid‐tetraploid contact zone in the northeastern part of the Belgian Ardennes, and (2) within mixed populations from that zone where diploids and tetraploids coexist. Our data were also compared with a published dataset by Sommer (1990) describing allozyme variation in separate diploid and tetraploid knapweeds populations collected throughout Europe. Genetic diversity was higher in tetraploids. In the Belgian Ardennes and within the mixed populations, both cytotypes had similar levels of spatial genetic structure, they were genetically differentiated, and their distributions of allele frequencies were not spatially correlated. In contrast, at the European scale, diploids and tetraploids did not show differentiated gene pools and presented a strong correlation between their patterns of spatial genetic variation. Numerical simulations showed that the striking difference in patterns observed at small and large geographic scales could be accounted for by a combination of (1) isolation by distance within cytotypes; and (2) partial reproductive barriers between cytotypes and/or recurrent formation of tetraploids. We suggest that this may explain the difficulty of the taxonomic treatment of knapweeds and of polyploid complexes in general.  相似文献   
136.
Mapping macroecology   总被引:2,自引:1,他引:1  
Although macroecology arose from geographical ecology, it has diverted from a geographical perspective. At present, most macroecological studies use a statistical approach that adopts an 'individual species focus' and relies on comparisons between species to test for broad-scale ecological patterns. Sometimes, space is included as part of the analysis, but almost always in a single dimension. In both situations, observed relationships are depicted using bivariate scatter-plots. We argue that current macroecological approaches may interfere with our perception of patterns and have important implications for their biological interpretation. We use the literature concerned with spatial variation in the range sizes of species (Rapoport's rule) to illustrate our point of view. Given the current lack of maps actually showing the patterns we are trying to explain, we contend that macroecology could benefit greatly by returning to its geographical roots, at least when data contain spatial structure.  相似文献   
137.
Because to defect is the evolutionary stable strategy in the prisoner’s dilemma game (PDG), understanding the mechanism generating and maintaining cooperation in PDG, i.e. the paradox of cooperation, has intrinsic significance for understanding social altruism behaviors. Spatial structure serves as the key to this dilemma. Here, we build the model of spatial PDG under a metapopulation framework: the sub-populations of cooperators and defectors obey the rules in spatial PDG as well as the colonization–extinction process of metapopulations. Using the mean-field approximation and the pair approximation, we obtain the differential equations for the dynamics of occupancy and spatial correlation. Cellular automaton is also built to simulate the spatiotemporal dynamics of the spatial PDG in metapopulations. Join-count statistics are used to measure the spatial correlation as well as the spatial association of the metapopulation. Simulation results show that the distribution is self-organized and that it converges to a static boundary due to the boycotting of cooperators to defectors. Metapopulations can survive even when the colonization rate is lower than the extinction rate due to the compensation of cooperation rewards for extinction debt. With a change of parameters in the model, a metapopulation can consist of pure cooperators, pure defectors, or cooperator–defector coexistence. The necessary condition of cooperation evolution is the local colonization of a metapopulation. The spatial correlation between the cooperators tends to be weaker with the increase in the temptation to defect and the habitat connectivity; yet the spatial correlation between defectors becomes stronger. The relationship between spatial structure and the colonization rate is complicated, especially for cooperators. The metapopulation may undergo a temporary period of prosperity just before the extinction, even while the colonization rate is declining. An erratum to this article can be found at  相似文献   
138.
The watershed of the Altamaha River, Georgia, is one of the largest in the southeastern U.S., draining 36,718 km2 (including parts of metro Atlanta). We calculated both nitrogen (fertilizer, net food and feed import, atmospheric deposition, and biological N fixation in agricultural and forest lands) and phosphorus (fertilizer and net food and feed import) inputs to the watershed for 6 time points between 1954 and 2002. Total nitrogen inputs rose from 1,952 kg N km−2 yr−1 in 1954 to a peak of 3,593 kg N km−2 yr−1 in 1982 and then declined to 2,582 kg N km−2 yr−1 by 2002. Phosphorus inputs rose from 409 kg P km−2 yr−1 in 1954 to 532 kg P km−2 yr−1 in 1974 before declining to 412 kg P km−2 yr−1 in 2002. Fertilizer tended to be the most important input of both N and P to the watershed, although net food and feed import increased in importance over time and was the dominant source of N input by 2002. When considered on an individual basis, fertilizer input tended to be highest in the middle portions of the watershed (Little and Lower Ocmulgee and Lower Oconee sub-watersheds) whereas net food and feed imports were highest in the upper reaches (Upper Oconee and Upper Ocmulgee sub-watersheds). Although the overall trend in recent years has been towards decreases in both N and P inputs, these trends may be offset due to continuing increases in animal and human populations.  相似文献   
139.
The role of secondary vegetation in restoring soil fertility during shifting cultivation in the tropics is well known. Yet the effect of secondary succession on the spatial patterns of soil properties has received little attention. To determine whether changes in the plant community as a result of shifting cultivation affect the scale of spatial dependence for biologically important soil nutrients, we sampled three dry tropical forest stands in Campeche, Mexico. These stands represented a gradient of cultivation history: one mature forest stand, a forest fallow that had undergone one cultivation-fallow cycle, and a forest fallow that had undergone two cultivation-fallow cycles. We used an analysis of semivariance to quantify the scale and magnitude of spatial dependence for organic matter content (OM), phosphorus (P), potassium (K), and aluminum (Al) in each stand. The scale of spatial dependence varied with cultivation history, but the degree of spatial dependence did not differ among stands. In the mature forest P and K were autocorrelated over distances >7.5 m. In the forest fallows 48–88% of the variation in soil P and K was autocorrelated over distances up to 1.1–5.1 m. In contrast, the range of autocorrelation for Al (∼2.5 m) did not differ among stands. We conclude that shifting cultivation changes the range of autocorrelation for biologically important soil nutrients at a scale that may influence plant growth. The finer scaled pattern of soil nutrients in forest fallows is likely to persist with continued shifting cultivation, since fallows are cleared every 3–15 years.  相似文献   
140.
We consider a predator-prey model in a two-patch environment and assume that migration between patches is faster than prey growth, predator mortality and predator-prey interactions. Prey (resp. predator) migration rates are considered to be predator (resp. prey) density-dependent. Prey leave a patch at a migration rate proportional to the local predator density. Predators leave a patch at a migration rate inversely proportional to local prey population density. Taking advantage of the two different time scales, we use aggregation methods to obtain a reduced (aggregated) model governing the total prey and predator densities. First, we show that for a large class of density-dependent migration rules for predators and prey there exists a unique and stable equilibrium for migration. Second, a numerical bifurcation analysis is presented. We show that bifurcation diagrams obtained from the complete and aggregated models are consistent with each other for reasonable values of the ratio between the two time scales, fast for migration and slow for local demography. Our results show that, under some particular conditions, the density dependence of migrations can generate a limit cycle. Also a co-dim two Bautin bifurcation point is observed in some range of migration parameters and this implies that bistability of an equilibrium and limit cycle is possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号