首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   22篇
  国内免费   92篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   9篇
  2020年   8篇
  2019年   11篇
  2018年   10篇
  2017年   5篇
  2016年   10篇
  2015年   11篇
  2014年   5篇
  2013年   6篇
  2012年   13篇
  2011年   10篇
  2010年   14篇
  2009年   26篇
  2008年   22篇
  2007年   24篇
  2006年   15篇
  2005年   15篇
  2004年   19篇
  2003年   7篇
  2002年   9篇
  2001年   3篇
  2000年   9篇
  1999年   9篇
  1998年   13篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   10篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有359条查询结果,搜索用时 31 毫秒
101.
The perennial salt marsh grass Spartina anglica is one of the classic examples of allopolyploid speciation. It originated on the south coast of England at the end of the nineteenth century following chromosome doubling in S. × townsmdii , a hybrid between the native British S. marilima and a species introduced from the United States, S. alterniflora. The nature of the origin of S. anglica is beyond doubt; however, it is not known whether it had a single or multiple origin. In order to address this problem we undertook a survey of the genetic variation in the parental species of S. anglica using isozyme electrophoresis. The results show that S. alterniflora has no detectable variation and that S. maritima has extremely low levels of variation. These results, unfortunately, prevent the question of a single or multiple origin from being answered. Possible reasons for the low levels of variation and its influence on the future of the species are discussed. Another problem concerning the parental species is the rapid decline of S. maritima in Britain. It is often assumed that the major factor in this regression is the invasion of its habitats by S. anglica. We have examined the status of S. marilima throughout its range in Britain and have found that S. anglica rarely co-occurs with S. maritima. We propose that the decline of S. maritima is largely due to the physical erosion of its habitats and that this erosion may produce suitable habitats for colonization by S. anglica.  相似文献   
102.
Primary production rates of edaphic algae associated with the sediments beneath four monospecific canopies of vascular plants were determined over an annual cycle in a Mississippi salt marsh. The edaphic algal flora was dominated by small, motile pennate diatoms. Algal production (as measured by 14C uptake) was generally highest in spring-early summer and lowest in fall. Hourly rates ranged from a low of 1.4 mg C/m2 in Juncus roemerianus Scheele to a high of 163 mg C/m2 beneath the Scirpus olneyi gray canopy. Stepwise multiple regressions identified a soil moisture index and chlorophyll a as the best environmental predictors of hourly production; light energy reaching the marsh surface and sediment and air temperature proved of little value. Adding the relative abundances of 33 diatom taxa to the set of independent variables only slightly increased R2; however, virtually all variables selected were diatom taxa. R2 was only 0.38 for the Spartina alterniflora Loisel. habitat but ranged from 0.70 to 0.87 for the remaining three vascular plant zones. Annual rates of algal production (g C/m2) were estimated as follows: Juncus (28), Spartina (57), Distichlis spicata (L.) Greene (88), and Scirpus (151). The ratio of annual edaphic algal production to vascular plant net aerial production (EAP / VPP) was 10–12% for the first three habitats and 61% for Scirpus. Chlorophyll a concentrations, annual algal production rates, and EAP / VPP values were comparable to those determined in Texas, Delaware, and Massachusetts salt marshes but lower than those reported for Georgia and particularly California marshes.  相似文献   
103.
Wetland restoration is largely a developing science and engineering enterprise. Analyses of results are too few and constrained to observations over a few years. We report here on the effectiveness of one restoration technique used sparsely in coastal Louisiana for several decades. Canals have been dredged in coastal Louisiana wetlands since 1938 for oil and gas exploration and extraction. These canals are typically dredged to 2.5 m depth and are 20 to 40 m wide. Canal lengths vary from 100 m to several 1000s m in the case of outer continental shelf pipeline canals that cross the wetlands.Today, thousands of miles of canals crisscross these wetlands. Studies have linked dredged canals to a number of undesirable effects on the wetland environment including alterations in salinity, flooding and drainage patterns, direct loss of marsh by convention to open water, and increases in marsh erosion rates. These effects have led state and federal agencies charged with managing the wetland resource to look for methods of mitigating canal impacts. One possible method of managing spoil banks after the abandonment of a drilling site is to return spoil material from the spoil banks to the canal with the hope that marsh vegetation will be reestablished on the old spoil banks and in the canal. The movement of former spoil bank material back into the canal is referred to as backfilling.The purpose of this study was to (1) examine how backfilled canals changed over 10 years, (2) examine factors influencing success with multiple regression statistical models, and, (3) compare costs of backfilling with other Louisiana marsh restoartion projects. We examined the sites to document and interpret changes occurring since 1983/4 and to statistically model the combined data derived from these new and previous analyses. Specifically, we wanted to determine the recovery rates of vegetation, water depth, and soils in backfilled canals, restored spoil banks, and in nearby marshes, and to quantify the influence of plugging canals on these rates.The major factors determining backfilling restoration success are the depth of the canal, soil type, canal dimensions, locale, dredge operator skill, and permitting conditions. Plugging the canal has no apparent effect on water depth or vegetation cover, with the exception that submerged aquatic vegetation may be more frequently observed behind backfilled canals with plugs than in backfilled canals without plugs. Canal age, soil organic matter content, and whether restoration was done as mitigation on-site or off-site were the most important predictors of final canal depth. Canal length and percentage of spoil returned (+) had the greatest effect on the restoration of vegetation cover. Backfilled canals were shallower if they were older, in soils lower in organic matter, and backfilled off-site. Backfilling the canal restores wetlands at a cost of $1,200 to $3,400/ha, which compares very favorably with planned restoration projects in south Louisiana.Corresponding Editor: Anonumous  相似文献   
104.
选择闽江河口鳝鱼滩的互花米草湿地为研究对象,基于时空互代法,探讨了不同互花米草入侵年限(SA1: 5-6 年;SA2: 8-10 年;SA3: 12-14年)湿地土壤的无机硫赋存形态及其主要影响因素。结果表明,随着互花米草入侵年限的增加,湿地土壤的水溶性硫(H2O-S)含量整体呈增加趋势,而吸附性硫(Adsorbed-S)、盐酸可溶性硫(HCl-Soluble-S)和盐酸挥发性硫(HCl-Volatile-S)含量整体均呈降低趋势。相对于SA1,SA2、SA3土壤的H2O-S含量分别增加了10.02%和2.68%,而其Adsorbed-S、HCl-Soluble-S和HCl-Volatile-S含量分别降低了9.02%、10.95%、7.57%和15.61%、32.89%、15.14%。湿地土壤的总无机硫(TIS)含量、TIS储量及其占全硫(TS)储量的比例均随互花米草入侵年限的增加而降低,且这种降低主要取决于Adsorbed-S、HCl-Soluble-S和HCl-Volatile-S的贡献。此外,随着互花米草入侵年限的增加,影响湿地土壤不同形态无机硫赋存的环境因子均发生了较大变化,其中土壤颗粒组成、EC和pH的改变对无机硫赋存形态的影响最为明显。研究发现,随着互花米草入侵年限的增加以及该区对互花米草定期刈割活动的进行,湿地土壤无机硫养分可能将继续降低并逐渐趋于缺乏状态,长期而言将减弱互花米草自身的入侵能力。  相似文献   
105.
互花米草成功入侵的关键是其生长繁殖能力以及对环境的适应能力,叶片含水率、相对叶绿素含量、碳氮比、总氮、总磷以及比叶面积等叶片功能性状反应的是互花米草对资源的利用能力以及环境的适应能力。以江苏盐城滨海湿地为研究对象,进行互花米草叶片功能性状与高光谱数据的关系研究。通过对原始光谱数据以及一阶微分转换光谱数据进行主成分分析提取新的主成分变量作为自变量分别建立不同性状的逐步回归、BP神经网络、支持向量机、随机森林4种预测模型,通过比较构建模型的R2以及RMSE选择最优模型,进而基于相关性分析得到的敏感波段构建最优模型,验证其准确性和适用性。研究结果发现:(1)一阶微分数据的建模效果优于原始光谱数据;(2)通过对不同功能性状的预测建模,发现4种模型的预测效果排序为:随机森林>支持向量机>BP神经网络>逐步回归,其中随机森林模型的准确性高、稳定性强,明显优于其他3种模型,而逐步回归模型的效果最差,不适用于互花米草叶片功能性状的高光谱建模;(3)通过对相关性分析得到的敏感波段建立随机森林模型,建模R2均大于0.90,验证R2介于0.73-0.95之间,进一步证实了随机森林模型的准确性和稳定性。研究结果表明,高光谱数据可以作为快速监测互花米草生长状况的有力手段,而随机森林模型可以作为高精度模型实现对互花米草不同叶片功能性状的估测。  相似文献   
106.
于各测定月的小潮日,使用悬管装置采集气样并结合气相色谱测定,对闽江河口互花米草(Spartina alterniflora)沼泽湿地互花米草植株的甲烷传输量及其主要释放部位进行了研究,另又采用静态箱法-气相色谱法测定了互花米草沼泽湿地甲烷的排放通量,以此分析互花米草植物体甲烷传输对互花米草沼泽湿地甲烷排放通量的贡献率,最后测定了互花米草植株髓腔内的甲烷浓度。结果表明,不同生长阶段的互花米草植株甲烷传输量明显不同,快速生长阶段的互花米草植株甲烷传输量最高;互花米草植株甲烷传输对互花米草沼泽湿地甲烷排放通量的贡献率介于9%-94%之间;互花米草植物体传输甲烷的主要释放部位是距地面0-20cm处,该部位对植物甲烷传输量的贡献率为50%(平均值);髓腔内的甲烷浓度远高于大气中的甲烷浓度,且自下而上呈递减趋势。  相似文献   
107.
108.
109.
Concepts regarding effects of recurrent natural disturbances and subsequent responses of communities are central to ecology and conservation biology. Tropical cyclones constitute major disturbances producing direct effects (damage, mortality) in many coastal communities worldwide. Subsequent reassembly involves changes in composition and abundance for which the underlying mechanisms (deterministic and stochastic processes) are still not clear, especially for mobile organisms. We examined tropical cyclone-induced changes in composition and reassembly of entire insect communities in 16 Louisiana coastal salt marshes before and after Hurricane Isaac in 2012 and 2013. We used the Shannon index and multivariate permutational ANOVA to study insect resistance and resilience, β diversity partitioning to evaluate the importance of species replacement, and null models to disentangle the relative roles of different assembly processes over time after the tropical cyclone. The α diversity and species composition, overall and for different trophic levels, decreased immediately after the tropical cyclone; nonetheless, both then increased rapidly and returned to pre-cyclone states within one year. Changes in species abundance, rather than species replacement, was the primary driver, accounting for most temporal dissimilarity among insect communities. Stochastic processes, which drove community composition immediately after the tropical cyclone, decreased in importance over time. Our study indicates that rapid reformation of insect communities involved sequential landscape-level dynamics. Cyclone-resistant life cycle stages apparently survived in some, perhaps random locations within the overall salt marsh landscape. Subsequently, stochastic patterns of immigration of mobile life cycle stages resulted in rapid reformation of local communities. Post-cyclone direct regeneration of salt marsh insect communities resulted from low resistance, coupled with high landscape-level resilience via re-immigration. Our study suggests that the extent of direct regeneration of local salt marsh insect communities might change with the size of larger marsh landscapes within which they are imbedded.  相似文献   
110.
This study dealt with the decomposition and nutrient release from the halophytes Atriplex portulacoides, Arthrocnemum macrostachyum, Limoniastrum monopetalum, and Spartina densiflora, the dominant species in the Castro Marim salt marsh, Portugal. Environmental effects on decomposition were also assessed. The study was carried out for one year using the in situ litterbag technique. S. densiflora showed a lower decomposition rate (k = 0.003 day−1) than the other study species (k = 0.005-0.009). Study species showed similar decomposition patterns, that is, the weight loss mostly occurred during the autumn-winter period (study beginning in November). This indicates that temperature in this period did not hamper the decomposition process. The decomposition rate was positively affected by the initial N concentration (r2 = 0.87, P < 0.05) and negatively by the C:N ratio (r2 = 0.86, P < 0.05) in decomposing materials. At the end of the study, S. densiflora and L. monopetalum, the species with lower initial N concentrations, retained much higher proportion of initial N (89-109%) than the others (5-14%). Also, S. densiflora with the lowest P concentration retained higher proportion of initial P (48%) than the others (5-20%). Release of K and Mg were also slower from S. densiflora and was associated with their initial low concentration in this species. The lowest Mn release was observed from A. macrostachyum and also in relation to the lowest initial concentration. Our study supports the hypothesis that decomposition patterns of marsh species are mostly associated with differences regarding their morphology and chemical composition. Given the higher resistance of S. densiflora to decomposition, its progressive spreading may result in accumulation of organic detritus overtime in invaded salt marshes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号