首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1460篇
  免费   103篇
  国内免费   87篇
  2024年   2篇
  2023年   20篇
  2022年   11篇
  2021年   33篇
  2020年   38篇
  2019年   47篇
  2018年   44篇
  2017年   30篇
  2016年   51篇
  2015年   51篇
  2014年   61篇
  2013年   83篇
  2012年   56篇
  2011年   62篇
  2010年   66篇
  2009年   81篇
  2008年   77篇
  2007年   86篇
  2006年   77篇
  2005年   62篇
  2004年   57篇
  2003年   48篇
  2002年   41篇
  2001年   30篇
  2000年   27篇
  1999年   49篇
  1998年   23篇
  1997年   34篇
  1996年   34篇
  1995年   32篇
  1994年   25篇
  1993年   26篇
  1992年   15篇
  1991年   26篇
  1990年   17篇
  1989年   17篇
  1988年   10篇
  1987年   9篇
  1986年   13篇
  1985年   14篇
  1984年   15篇
  1983年   11篇
  1982年   12篇
  1981年   3篇
  1980年   6篇
  1979年   9篇
  1978年   3篇
  1977年   3篇
  1952年   1篇
  1950年   1篇
排序方式: 共有1650条查询结果,搜索用时 15 毫秒
81.
From an initial isolated position as the oldest evolutionary prototype of a bird, Archaeopteryx has, as a result of recent fossil discoveries, become embedded in a rich phylogenetic context of both more and less crownward stem-group birds. This has prompted debate over whether Archaeopteryx is simply a convergently bird-like non-avialan theropod. Here we show, using the first synchrotron microtomographic examination of the genus, that the eighth or Daiting specimen of Archaeopteryx possesses a character suite that robustly constrains it as a basal avialan (primitive bird). The specimen, which comes from the Mörnsheim Formation and is thus younger than the other specimens from the underlying Solnhofen Formation, is distinctive enough to merit designation as a new species, Archaeopteryx albersdoerferi sp. nov., but is recovered in close phylogenetic proximity to Archaeopteryx lithographica. Skeletal innovations of the Daiting specimen, such as fusion and pneumatization of the cranial bones, well vascularized pectoral girdle and wing elements, and a reinforced configuration of carpals and metacarpals, suggest that it may have had more characters seen in flying birds than the older Archaeopteryx lithographica. These innovations appear to be convergent on those of more crownward avialans, suggesting that Bavarian archaeopterygids independently acquired increasingly bird-like traits over time. Such mosaic evolution and iterative exploration of adaptive space may be typical for major functional transitions like the origin of flight.  相似文献   
82.
The pest Plodia interpunctella (Hübner) is reared in many research laboratories. In a culture established in 1996, attraction of males to the female‐produced sex pheromone in flight tunnel assays gradually decreased after ≈15 years of rearing. A new culture was established to enable comparison with the old culture regarding traits associated with mate finding. Female calling activity, pheromone titre and male antennal response to pheromone components did not differ between cultures. In contrast, very few males from the old culture reached the pheromone source in flight tunnel assays compared with 61%–81% of males from the other culture. Our results highlight the importance of maintaining viable insect cultures for research purposes and suggest frequent evaluation of traits involved in chemical communication in such cultures to ensure reliable results in experiments.  相似文献   
83.
This paper is focused on the model identification of a Micro Air Vehicle (MAV) in straight steady flight condition. The identification is based on input-output data collected from flight tests using both frequency and time dorrtain techniques. The vehicle is an in-house 40 cm wingspan airplane. Because of the complex coupled, multivariable and nonlinear dynamics of the aircraft, linear SISO structures for both the lateral and longitudinal models around a reference state were derived. The aim of the identification is to provide models that can be used in future development of control techniques for the MAV.  相似文献   
84.
Blue‐winged grasshoppers Oedipoda caerulescens (Linnaeus, 1758) are commonly found in flat, open, unprotected areas. In the event of immediate danger, they leave their camouflaged position and jump away at the last moment. The present study conducted in a flight arena shows that, despite jumping at short notice from a crouching position, the grasshoppers achieve the correct timing for an optimal leap. If both compound eyes are blinded and the animals are stimulated by touch to execute an unprepared jump, the take‐off of the flightless nymphs is delayed, and adults are delayed in raising their wings; the animals tumble backward during the leap (in the case of adults, if they do not open their wings). This is a result of the unprepared take‐off position; because the entire length of the hind legs cannot be used for acceleration, the body is rotated backward. However, the escape path is not ultimately affected because, in the air, physical processes compensate for the unfavourable starting conditions. In addition, no disadvantage is evident upon landing. In each case, a hook landing was completed safely (i.e. the grasshopper landed and swung round to face the direction it had come from). The impact force is reduced and the grasshopper stabilizes itself by rotating from a forward to a backward position, immediately after the first contact with the ground. The hook landing also serves to confuse the potential attacker, and the disappearance of the bright blue hind wings of the adult makes it difficult for predators to shift quickly enough to a different kind of search to relocate their prey. In conclusion, the present study shows that the escape behaviour of blue‐winged grasshoppers is adapted to extremely short escape distances.  相似文献   
85.
Two flight parameters (take-off and duration) and respiration level were measured, in two years in summer and early autumn, in dormant Coccinella septempunctata L. (Coleoptera: Coccinellidae) collected while hidden in grass tussocks in hibernation sites (HID) and in beetles collected on plants (PLA). The duration of tethered flight of HID beetles measured in the laboratory in late August and September 1995 (range of geometric means 190–440 s) was slightly longer than the flight of PLA beetles (80–310 s), both being much longer than trivial flight recorded in beetles foraging for prey during the breeding season (35 s). In general, the flight performance had a tendency to increase in September and to decrease in October.The oxygen consumption in HID beetles increased throughout September 1994 from 430 to 780 l g–1 h–1 and throughout October 1995 from 710 to 1060 l g–1 h–1. This increase is ascribed to a concomitant decrease in diapause intensity. A similar increase was observed also in PLA beetles in 1994 and oxygen consumption was always higher than in HID beetles, most probably due to feeding and digestion in PLA beetles.Laboratory feeding of HID beetles on aphids induced maturation of ovaries and increased oxygen uptake (from 680 to 1110 l g–1 h–1). Feeding on honey and pollen left their oxygen uptake unchanged. Effect of feeding on the flight parameters was mostly not significant. In agreement with its less suitable body shape and usually less distant dormancy sites, C. septempunctata was found a less apt flier than long-distance migrating coccinellid species.  相似文献   
86.
The wing loading of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), was found to decrease slightly with increasing size over a wide range of individual sizes and independent of sex. This makes it possible to use tags of the same weight for beetles of all sizes and suggests that if the addition of light electronic tags has any effect on the beetle's flight it will be similar across beetle size. The wing loading of individual potato beetles ranged from an average minimum 10.9 N m–2 to an average maximum of 15.6 N m–2 as their weights fluctuated over time following water and food uptake or dispersal. However, tests carried out in flight chambers indicate that beetles become incapable of upward flight as they go beyond an average wing loading of 11.8 N m–2, that is 101 N (10.3 mg) beyond their minimum weight. It is estimated from our results that electronic tags should weigh no more than 23–33% of the potato beetle's acceptable extra loading for the technique to have no or minimal impact on the number and quality of upward flights taken.  相似文献   
87.
Thomson I 《Mutation research》1999,430(2):563-209
Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.  相似文献   
88.
We previously reported that the space environment consisting of microgravity and space radiation induced an increased level of p53 protein, a tumor suppressor gene product, in rat skin. Here, we report the increase of p53 protein in the muscles of rats that traveled into space. Rats were divided into three groups. The first group remained on earth (VC), and did not show any change in p53 protein level. The second group made a 14-day flight into space on the Second Spacelab Life Science (SLS-2) Mission (F). The third group was experimentally subjected to the same kinds of stress as those in the second group without making a space flight (SC). F and SC rats were sacrificed on day zero (F-0, SC-0) and day nine (F-9, SC-9) after return from space. F-0 rats showed a 1.5-fold increase in p53 protein level compared with that of SC-0 rats, whereas, F-9 rats showed a 1.35-fold increase in p53 protein compared with that of SC-9 rats. These results suggest that the accumulation of cellular p53 protein induced by space environments occurs not only in rat skin cells, but also in rat muscle cells.  相似文献   
89.
Kiefer J 《Mutation research》1999,430(2):265-313
This paper addresses some of the pertinent questions relating to the assessment of radiation risk for humans in space; the paper is not intended as a comprehensive review. The radiation field is briefly summarised and doses to be expected are given based on recent on-board measurements. The problems in adapting terrestrial epidemiological data to the space situation are outlined. Apart from the intrinsic uncertainties in deriving risk factors the specific difficulties are mainly concerned with the effects of energetic charged particles for which no human data exist. The necessity for continuing ground-based research is stressed. Also discussed is whether the principles of radiation protection successfully applied on Earth are really suitable for the space situation or whether they should be replaced by a different approach.  相似文献   
90.
Three groups of specialist nectar-feeders covering a continuous size range from insects, birds and bats have evolved the ability for hovering flight. Among birds and bats these groups generally comprise small species, suggesting a relationship between hovering ability and size. In this study we established the scaling relationship of hovering power with body mass for nectar-feeding glossophagine bats (Phyllostomidae). Employing both standard and fast-response respirometry, we determined rates of gas exchange in Hylonycteris underwoodi (7 g) and Choeronycteris mexicana (13–18 g) during hover-feeding flights at an artificial flower that served as a respirometric mask to estimate metabolic power input. The O2 uptake rate ( o2) in ml g−1 h−1 (and derived power input) was 27.3 (1.12 W or 160 W kg−1) in 7-g Hylonycteris and 27.3 (2.63 W or 160 W kg−1) in 16.5-g Choeronycteris and thus consistent with measurements in 11.9-g Glossophagasoricina (158 W kg−1, Winter 1998). o2 at the onset of hovering was also used to estimate power during forward flight, because after a transition from level forward to hovering flight gas exchange rates initially still reflect forward flight rates. o2 during short hovering events (<1.5 s) was 19.0 ml g−1 h−1 (1.8 W) in 16-g Choeronycteris, which was not significantly different from a previous, indirect estimate of the cost of level forward flight (2.1 W, Winter and von Helversen 1998). Our estimates suggest that power input during hovering flight P h (W) increased with body mass M (kg) within 13–18-g Choeronycteris (n = 4) as P h  = 3544 (±2057 SE) M 1.76 (±0.21 SE) and between different glossophagine bat species (n = 3) as P h  = 128 (±2.4 SE) M 0.95 (±0.034 SE). The slopes of three scaling functions for flight power (hovering, level forward flight at intermediate speed and submaximal flight power) indicate that: 1. The relationship between flight power to flight speed may change with body mass in the 6–30-g bats from a J- towards a U-shaped curve. 2. A metabolic constraint (hovering flight power equal maximal flight power) may influence the upper size limit of 30–35 g for this group of flower specialists. Mass-specific power input (W kg−1) during hovering flight appeared constant with regard to body size (for the mass ranges considered), but differed significantly (P < 0.001) between groups. Group means were 393 W kg−1 (sphingid moths), 261 W kg−1 (hummingbirds) and 159 W kg−1 (glossophagine bats). Thus, glossophagine bats expend the least metabolic power per unit of body mass supported during hovering flight. At a metabolic power input of 1.1 W a glossophagine bat can generate the lift forces necessary for balancing 7 g against gravitation, whereas a hummingbird can support 4 g and a sphingid moth only 3 g of body mass with the same amount of metabolic energy. These differences in power input were not fully explained by differences in induced power output estimated from Rankine-Froude momentum-jet theory. Accepted: 10 November 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号