首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   889篇
  免费   24篇
  国内免费   40篇
  953篇
  2023年   11篇
  2022年   7篇
  2021年   8篇
  2020年   6篇
  2019年   18篇
  2018年   7篇
  2017年   12篇
  2016年   15篇
  2015年   13篇
  2014年   27篇
  2013年   40篇
  2012年   22篇
  2011年   51篇
  2010年   46篇
  2009年   45篇
  2008年   44篇
  2007年   41篇
  2006年   54篇
  2005年   28篇
  2004年   34篇
  2003年   27篇
  2002年   10篇
  2001年   12篇
  2000年   15篇
  1999年   31篇
  1998年   20篇
  1997年   23篇
  1996年   14篇
  1995年   18篇
  1994年   21篇
  1993年   10篇
  1992年   17篇
  1991年   17篇
  1990年   24篇
  1989年   13篇
  1988年   12篇
  1987年   16篇
  1986年   18篇
  1985年   6篇
  1984年   19篇
  1982年   13篇
  1981年   7篇
  1980年   8篇
  1979年   14篇
  1978年   8篇
  1977年   7篇
  1976年   2篇
  1974年   3篇
  1973年   7篇
  1972年   4篇
排序方式: 共有953条查询结果,搜索用时 15 毫秒
861.
Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells' activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm.  相似文献   
862.
The Caenorhabditis elegans embryo achieves pattern formation by sorting cells into coherent regions before morphogenesis is initiated. The sorting of cells is coupled to their fate. Cells move extensively relative to each other to reach their correct position in the body plan. Analyzing the mechanism of cell sorting in in vitro culture experiments using 4D microscopy, we show that all AB-derived cells sort only according to their local neighbors, and that all cells are able to communicate with each other. The directions of cell movement do not depend on a cellular polarity but only on local cell-cell interactions; in experimental situations, this allows even the reversal of the polarity of whole regions of the embryo. The work defines a new mechanism of pattern formation we call "cell focusing".  相似文献   
863.
Human serum albumin (HSA) patterns have been successfully fabricated for the deposition of lipid bilayer, 1,2-dimyristoyl-sglycerophosphate (DMPA), by making use of the micro-contact printing (microCP) technique and liposome fusion. Confocal laser scanning microscopy (CLSM) results indicate that lipid bilayer has been assembled in HSA patterns with a good stability. Such well-defined lipid patterns formed on HSA surface create possibility to incorporate specific components like channels or receptors for specific recognition. In view of this, microspheres coated with lipid membranes were immobilized in HSA-supported lipid patterns via the hybridization of complementary ss-DNAs. This procedure enables to transfer solid materials to a soft surface through a specific recognition.  相似文献   
864.
The resonant properties of the intrinsic dynamics of single neurons could play a direct role in behaviour. One plausible role is in the recognition of temporal patterns, such as that seen in the auditory communication systems of Orthoptera. Recent behavioural data from bushcrickets suggests that this behaviour has interesting resonance properties, but the underlying mechanism is unknown. Here we show that a very simple and general model for neural resonance could directly account for the different behavioural responses of bushcrickets to different song patterns.  相似文献   
865.
The front and back (ventral and dorsal part respectively) of arthropods and chordates are defined by a highly conserved mechanism during early embryonic development [De Robertis and Kuroda in Annu. Rev. Cell Dev. Biol. 20, 285–308 (2004)]. An important feature is the sudden formation of a narrow midline peak of signaling. Mathematical models have helped to improve our understanding of the underlying mechanism [Eldar et al. in Nature 419(6904), 304–308 (2002); Mizutani in Dev. Cell 8(6), 915–924 (2005); Shimmi et al. in Cell 120(6), 873–886, (2005)]. In particular, the most recent model shows that diffusion and receptor-dependent degradation of the morphogen together with protease-mediated cleavage of a carrier protein for the morphogen are sufficient for the sudden generation of a sharp midline peak [Mizutani in Dev. Cell 8(6), 915–924 (2005)]. How these processes give rise to the observed pattern and how sensitive the model is to changes in parameter values has, however, not been resolved by this numerical study. By analysing the model in detail, we find that the sudden formation of a signaling peak is the consequence of the inversion of the gradient of the morphogen-carrier complex in the dorsal domain. As a consequence ligand is suddenly transported into rather than out of the midline, and a midline peak forms. We further show that a two-component carrier complex, consisting of Sog and Tsg, is required for abrupt peak formation. We derive quantitative conditions for the time and concentration at which the peak forms. We identify the receptor concentration, the ligand production and degradation rates, and the carrier production, diffusion, and cleavage rates as parameters to which the model is sensitive. Numerical studies confirm our analysis.   相似文献   
866.
Observations of a host-parasitoid interaction in which victims are significantly less motile than their exploiters suggest the possibility of stable spatial pattern in a fairly homogeneous environment. Findings of pattern formation in continuous-time models are not fully able to account for this behavior. Those findings often rely on questionable biological conditions, and more fundamentally, the continuous nature of time in such models does not reflect the reality of the observed interaction. In this paper, we introduce a discrete-time spatial model of the interaction. The final state of our model is often a striking spatial pattern, similar to those observed. We analyze the model, describe its transient behavior, and find the conditions under which these spatial patterns occur, as well as an estimate of maximum possible patch size under those conditions. We also discuss the existence of such conditions in the natural system.  相似文献   
867.
Space experiments provide a unique opportunity to advance our knowledge of how plants respond to the space environment, and specifically to the absence of gravity. The European Modular Cultivation System (EMCS) has been designed as a dedicated facility to improve and standardise plant growth in the International Space Station (ISS). The EMCS is equipped with two centrifuges to perform experiments in microgravity and with variable gravity levels up to 2.0 g. Seven experiments have been performed since the EMCS was operational on the ISS. The objectives of these experiments aimed to elucidate phototropic responses (experiments TROPI‐1 and ‐2), root gravitropic sensing (GRAVI‐1), circumnutation (MULTIGEN‐1), cell wall dynamics and gravity resistance (Cell wall/Resist wall), proteomic identification of signalling players (GENARA‐A) and mechanism of InsP3 signalling (Plant signalling). The role of light in cell proliferation and plant development in the absence of gravity is being analysed in an on‐going experiment (Seedling growth). Based on the lessons learned from the acquired experience, three preselected ISS experiments have been merged and implemented as a single project (Plant development) to study early phases of seedling development. A Topical Team initiated by European Space Agency (ESA), involving experienced scientists on Arabidopsis space research experiments, aims at establishing a coordinated, long‐term scientific strategy to understand the role of gravity in Arabidopsis growth and development using already existing or planned new hardware.  相似文献   
868.
Toll-like receptors (TLRs) are key molecular sensors used by the mammalian innate immune system to detect microorganisms. Although TLR functions in colonic immune homeostasis and tolerance to commensal bacteria have been intensively researched, the precise roles of different TLRs in response to pathogen infection in the gut remain elusive. Peyer patches are the major entrance of Salmonella infection and antigen transportation in intestine. Here, we report that, in contrast to TLR5 as a “carrier of Salmonella,” TLR11 works as a “blocker of Salmonella” to prevent highly invasive Salmonella from penetrating into the murine Peyer patches and spreading systemically. TLR11 plays an important role in mediating TNF-α induction and systemic inflammation in response to Salmonella infection. Remarkably, in mice lacking TLR11, apparent hemorrhages at Peyer patches are induced by highly invasive Salmonella, a phenotype resembling human Salmonella infection. Therefore, our results indicate a potentially important role for TLR11 in preventing murine intestinal infection and modulating antigen transportation in the gut and imply an important role for various TLRs in cooperation with tight control of pathogens penetrating into Peyer patches. The TLR11 knock-out mouse can serve as a good animal model to study Salmonella infection.  相似文献   
869.
Nucleotide binding and oligomerization domain-containing protein 2 (NOD2/Card15) is an intracellular protein that is involved in the recognition of bacterial cell wall-derived muramyl dipeptide. Mutations in the gene encoding NOD2 are associated with inherited inflammatory disorders, including Crohn disease and Blau syndrome. NOD2 is a member of the nucleotide-binding domain and leucine-rich repeat-containing protein gene (NLR) family. Nucleotide binding is thought to play a critical role in signaling by NLR family members. However, the molecular mechanisms underlying signal transduction by these proteins remain largely unknown. Mutations in the nucleotide-binding domain of NOD2 have been shown to alter its signal transduction properties in response to muramyl dipeptide in cellular assays. Using purified recombinant protein, we now demonstrate that NOD2 binds and hydrolyzes ATP. Additionally, we have found that the purified recombinant protein is able to bind directly to muramyl dipeptide and can associate with known NOD2-interacting proteins in vitro. Binding of NOD2 to muramyl dipeptide and homo-oligomerization of NOD2 are enhanced by ATP binding, suggesting a model of the molecular mechanism for signal transduction that involves binding of nucleotide followed by binding of muramyl dipeptide and oligomerization of NOD2 into a signaling complex. These findings set the stage for further studies into the molecular mechanisms that underlie detection of muramyl dipeptide and assembly of NOD2-containing signaling complexes.  相似文献   
870.
Complex structural variants (CSVs) are genomic alterations that have more than two breakpoints and are considered as the simultaneous occurrence of simple structural variants. However, detecting the compounded mutational signals of CSVs is challenging through a commonly used model-match strategy. As a result, there has been limited progress for CSV discovery compared with simple structural variants. Here, we systematically analyzed the multi-breakpoint connection feature of CSVs, and proposed Mako, utilizing a bottom-up guided model-free strategy, to detect CSVs from paired-end short-read sequencing. Specifically, we implemented a graph-based pattern growth approach, where the graph depicts potential breakpoint connections, and pattern growth enables CSV detection without pre-defined models. Comprehensive evaluations on both simulated and real datasets revealed that Mako outperformed other algorithms. Notably, validation rates of CSVs on real data based on experimental and computational validations as well as manual inspections are around 70%, where the medians of experimental and computational breakpoint shift are 13 bp and 26 bp, respectively. Moreover, the Mako CSV subgraph effectively characterized the breakpoint connections of a CSV event and uncovered a total of 15 CSV types, including two novel types of adjacent segment swap and tandem dispersed duplication. Further analysis of these CSVs also revealed the impact of sequence homology on the formation of CSVs. Mako is publicly available at https://github.com/xjtu-omics/Mako.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号