首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   78篇
  国内免费   108篇
  860篇
  2024年   10篇
  2023年   11篇
  2022年   20篇
  2021年   25篇
  2020年   28篇
  2019年   37篇
  2018年   26篇
  2017年   22篇
  2016年   20篇
  2015年   24篇
  2014年   17篇
  2013年   43篇
  2012年   37篇
  2011年   32篇
  2010年   29篇
  2009年   44篇
  2008年   39篇
  2007年   35篇
  2006年   33篇
  2005年   32篇
  2004年   29篇
  2003年   21篇
  2002年   27篇
  2001年   13篇
  2000年   26篇
  1999年   14篇
  1998年   22篇
  1997年   11篇
  1996年   8篇
  1995年   8篇
  1994年   12篇
  1993年   13篇
  1992年   16篇
  1991年   10篇
  1990年   13篇
  1989年   8篇
  1988年   8篇
  1987年   10篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
排序方式: 共有860条查询结果,搜索用时 15 毫秒
61.
荒漠是重要的陆地生态系统之一, 其生态系统极其脆弱, 极易发生荒漠化。荒漠土壤的稳定和功能对于荒漠生态系统结构和功能的维持至关重要。但在荒漠地区, 大多数土壤功能的研究还主要集中在单一的土壤功能性。本研究基于准噶尔荒漠79个样点的土壤有机碳(SOC)、氮(N)、磷(P)、有效氮(AN)和有效磷(AP)等指标, 通过平均值法和因子分析法计算土壤多功能(soil multifunctionality, SMF)指数, 研究SMF空间变异特征及驱动因素。空间分析所示从整体来看, 荒漠SMF在空间分布上具有较大的异质性, 自西向东, SMF总体呈现逐渐增加的趋势, 而从南向北, SMF呈现先增加后降低的趋势。最优拟合显示, SMF与年均降雨量(MAP)和年均温(MAT)呈显著二次函数关系, 随着MAP和MAT的增加表现出先降低后升高的趋势; SMF与pH和植被增强指数(EVI)呈显著线性关系, SMF随着pH的增加表现出显著降低趋势, 而随着EVI的增加表现为显著上升的趋势; SMF与Aridity (干旱度)之间既符合二次函数关系也呈现线性关系(二者R2相同), 随Aridity增加而减少。结构方程模型结果表明, 土壤含水率(SWC)是SMF变化的最重要的驱动因素, 其次为EVI。土壤pH、SWC、MAT、Aridity和EVI对荒漠SMF具有显著的直接效应, 其中SWC和EVI为显著正效应, 其他为负效应。MAP、经度(Lon)、纬度(Lat)和海拔(Alt)可通过影响MAT等指标对SMF产生间接效应。研究结果对深入理解准噶尔荒漠SMF的空间变异特征及驱动因素具有重要意义, 将有助于预测环境变化对荒漠生态系统多功能性的影响, 为生态系统科学管理服务。  相似文献   
62.
This study examined the genetic diversity of small-spored Alternaria species in the southwest desert of the USA by sampling 552 isolates from different habitats (soil and plant debris) in different locations (urban and an undisturbed desert). To estimate the genetic diversity, Amplified Fragment Length Polymorphism (AFLP) fingerprinting analysis was performed for all isolates. Strains representative of the sampled genotypic diversity (n = 125) were further characterized according their sporulation pattern and the capability to produce allergens. Morphological characterization assigned the majority of the strains to the Alternaria alternata and Alternaria tenuissima morpho-groups with only two isolates assigned to the Alternaria arborescens morpho-group. AFLP fingerprinting differentiated the A. arborescens morpho-groups, but could not distinguish between the A. alternata and A. tenuissima morpho-groups. Western blot analysis showed that a large number of allergenic proteins were produced by strains. These proteins were not specific for any morpho-group nor source of isolation. A hierarchical analysis of molecular variance was performed on the AFLP data to quantify molecular variation and partition this variation among sampled locations and habitat. No statistically significant differentiation among locations and habitat was detected indicating a lack of population structure across environments.  相似文献   
63.
Much of California's San Joaquin Valley is a desert and, like portions of other North American deserts, is experiencing an ecological shift from being dominated by ephemeral native forbs, with widely spaced shrubs, to fire-prone non-native annual grasses. Small terrestrial vertebrates, many of which are adapted to open desert habitats, are declining. One hypothesis is that the invasive plants contribute to the decline by altering vegetative structure. Although cattle may have originally been a factor in the establishment of these non-native plants, their grazing may benefit the terrestrial vertebrates by maintaining an open structure, especially during average or wet winters when the exotic grasses grow especially dense. We experimentally tested the effect of cattle grazing on invasive plants and a community of small vertebrates at a site in the southwestern San Joaquin Desert. We established and monitored 4 treatment (grazed) and 4 control (ungrazed) plots from 1997 to 2006, and assessed the abundances of blunt-nosed leopard lizards (Gambelia sila), giant kangaroo rats (Dipodomys ingens), short-nosed kangaroo rats (Dipodomys nitratoides nitratoides), and San Joaquin antelope squirrels (Ammospermophilus nelsoni), all of which are listed as threatened or endangered by state or federal agencies. We also recorded abundances of the non-protected western whiptail lizards (Aspidoscelis tigris), side-blotched lizards (Uta stansburiana), San Joaquin pocket mice (Perognathus inornatus inornatus), and Heermann's kangaroo rats (Dipdomys heermanni). Based on repeated measures analysis of variance (ANOVA) and a 0.05 alpha level, only Heermann's kangaroo rats showed a treatment effect; they were more abundant on the control plots. However, this effect could be accounted for by the natural re-establishment of saltbush (Atriplex spp.) on part of the study site. Saltbush return also favored western whiptail lizards and San Joaquin antelope squirrels. A regression analysis indicated that populations of blunt-nosed leopard lizard and giant kangaroo rat increased significantly faster in grazed plots than the ungrazed controls, and abundances of 6 of 8 species were negatively correlated with increased residual dry matter. With relaxed alpha values to decrease Type II error, populations of blunt-nosed leopard lizards (500% greater), San Joaquin antelope squirrels (85% greater), and short-nosed kangaroo rats (73% greater) increased significantly on grazed plots over the course of the study compared to ungrazed plots. We did not find grazing to negatively affect abundance of any species we studied. When herbaceous cover is low during years of below average rainfall in deserts and other arid areas, grazing may not be necessary to maintain populations of small vertebrates. However, if cattle grazing is closely monitored in space and time to minimize adverse effects on the habitat, it could be an effective tool to control dense stands of non-native grasses and benefit native wildlife. © 2011 The Wildlife Society.  相似文献   
64.
Global climate models predict that in the next century precipitation in desert regions of the USA will increase, which is anticipated to affect biosphere/atmosphere exchanges of both CO2 and H2O. In a sotol grassland ecosystem in the Chihuahuan Desert at Big Bend National Park, we measured the response of leaf-level fluxes of CO2 and H2O 1 day before and up to 7 days after three supplemental precipitation pulses in the summer (June, July, and August 2004). In addition, the responses of leaf, soil, and ecosystem fluxes of CO2 and H2O to these precipitation pulses were also evaluated in September, 1 month after the final seasonal supplemental watering event. We found that plant carbon fixation responded positively to supplemental precipitation throughout the summer. Both shrubs and grasses in watered plots had increased rates of photosynthesis following pulses in June and July. In September, only grasses in watered plots had higher rates of photosynthesis than plants in the control plots. Soil respiration decreased in supplementally watered plots at the end of the summer. Due to these increased rates of photosynthesis in grasses and decreased rates of daytime soil respiration, watered ecosystems were a sink for carbon in September, assimilating on average 31 mmol CO2 m−2 s−1 ground area day−1. As a result of a 25% increase in summer precipitation, watered plots fixed eightfold more CO2 during a 24-h period than control plots. In June and July, there were greater rates of transpiration for both grasses and shrubs in the watered plots. In September, similar rates of transpiration and soil water evaporation led to no observed treatment differences in ecosystem evapotranspiration, even though grasses transpired significantly more than shrubs. In summary, greater amounts of summer precipitation may lead to short-term increased carbon uptake by this sotol grassland ecosystem.  相似文献   
65.
Research in river-floodplain systems has emphasized the importance of nutrient delivery by floodwaters, but the mechanisms by which floods make nutrients available are rarely evaluated. Using a laboratory re-wetting experiment, we evaluated the alternative hypotheses that increased nutrient concentrations in riparian groundwater during flash floods are due to (H1) elevated nutrient concentrations in surface floodwaters entering the riparian zone or (H2) re-mobilization of nutrients from riparian soils. We sampled soils from the riparian zone of a 400m reach of Sycamore Creek, AZ. Two sub-samples from each soil were re-wetted with a solution that mimicked the chemistry of floodwaters, with one sub-sample simultaneously treated with a biocide. We also measured structural characteristics of soils (texture, organic matter, moisture, and extractable nutrients) to investigate relationships between these characteristics and response to re-wetting. Riparian soils exhibited considerable variation in physical and chemical structure. Soil organic matter, moisture, and texture co-varied among samples. Re-wetting increased concentrations of nitrate and ammonium, and decreased SRP, relative to initial concentrations. Live soils were significantly lower in NO3-and SRP than biocide-treated samples. Extractable DIN pools were the best predictors of mobilization, and soil organic matter was strongly correlated with nitrate losses, probably via its relationship with microbial uptake. Nutrient mobilization and processing also varied considerably with depth, lateral position, and among plots. We estimate that 70–80% of N in riparian groundwater during flash floods is re-mobilized from riparian soils, but are unable to reject the hypothesis that flood inputs may be important sources of nutrients to riparian soils over longer time scales.  相似文献   
66.
Guo  Qinfeng 《Plant Ecology》1998,139(1):71-80
The effects of microhabitat differentiation on small-scale plant community structure in the Chiuhuahuan Desert were studied using multivariate analysis. The results showed that microhabitats (i.e., kangaroo rat mounds, ant mounds, shrubs, half-shrubs, and open areas) played a critical role in structuring small-scale plant community structure and maintaining species diversity. Annual plants were much more sensitvive to the presence of differentiated microhabitats than perennials and winter annuals exhibited stronger microhabitat perferences than summer annuals. Species diversity was highest on ant mounds while open areas supported the lowest diversity during both winter and summer. Biomass was highest in the shrub habitats followed by kangaroo rat mounds, ant mounds, half-shrubs, and open areas. Much of the diversity of these plants could be explained by the individualistic responses of species to the biotic effect of other plants or to disturbance by animals, or individualistic responses of species to differences in microenvironments.  相似文献   
67.
Graminivory by kangaroo rats (Dipodomys spp.) was investigated as a potential mechanism for the keystone role of these rodents in the dynamics of desert grasslands. Experiments confirmed that Ord's kangaroo rats (Dipodomys ordii) cut and consumed a large proportion of the tillers of three Chihuahuan Desert tussock-forming grass species. Field observations indicated that the characteristically cut grass tillers were absent from all-rodent and medium-sized kangaroo rat exclosures, but were frequent in large-sized kangaroo rat and rabbit exclosures, indicating that the medium-sized kangaroo rats (D. ordii, D. merriami) were responsible for grass cutting. Tiller waste as a percentage of peak standing crop ranged from 7% in grassland habitats to 0.7% in Flourensia cernua shrubland. Of the 13 species of perennial, tussock-forming grasses measured, only one, Muhlenbergia porteri, had no tillers cut by kangaroo rats. This study demonstrates that the keystone role of kangaroo rats in Chihuahuan Desert grassland ecosystems is probably the result of their graminivory. Received: 28 October 1996 / Accepted: 26 February 1997  相似文献   
68.
A culture-independent diversity assessment of archaea, bacteria and fungi in the Thar Desert in India was made. Six locations in Ajmer, Jaisalmer, Jaipur and Jodhupur included semi-arid soils, arid soils, arid sand dunes, plus arid cryptoendolithic substrates. A real-time quantitative PCR approach revealed that bacteria dominated soils and cryptoendoliths, whilst fungi dominated sand dunes. The archaea formed a minor component of all communities. Comparison of rRNA-defined community structure revealed that substrate and climate rather than location were the most parsimonious predictors. Sequence-based identification of 1240 phylotypes revealed that most taxa were common desert microorganisms. Semi-arid soils were dominated by actinobacteria and alpha proteobacteria, arid soils by chloroflexi and alpha proteobacteria, sand dunes by ascomycete fungi and cryptoendoliths by cyanobacteria. Climatic variables that best explained this distribution were mean annual rainfall and maximum annual temperature. Substrate variables that contributed most to observed diversity patterns were conductivity, soluble salts, Ca2+ and pH. This represents an important addition to the inventory of desert microbiota, novel insight into the abiotic drivers of community assembly, and the first report of biodiversity in a monsoon desert system.  相似文献   
69.
Sporadic rains in the Atacama Desert reveal a high biodiversity of plant species that only occur there. One of these rare species is the “Red añañuca” (Zephyranthes phycelloides), formerly known as Rhodophiala phycelloides. Many species of Zephyranthes in the Atacama Desert are dangerously threatened, due to massive extraction of bulbs and cutting of flowers. Therefore, studies of the biodiversity of these endemic species, which are essential for their conservation, should be conducted sooner rather than later. There are some chloroplast genomes available for Amaryllidaceae species, however there is no complete chloroplast genome available for any of the species of Zephyranthes subgenus Myostemma. The aim of the present work was to characterize and analyze the chloroplast of Z. phycelloides by NGS sequencing. The chloroplast genome of the Z. phycelloides consists of 158,107 bp, with typical quadripartite structures: a large single copy (LSC, 86,129 bp), a small single copy (SSC, 18,352 bp), and two inverted repeats (IR, 26,813 bp). One hundred thirty-seven genes were identified: 87 coding genes, 8 rRNA, 38 tRNA and 4 pseudogenes. The number of SSRs was 64 in Z. phycelloides and a total of 43 repeats were detected. The phylogenetic analysis of Z. phycelloides shows a distinct subclade with respect to Z. mesochloa. The average nucleotide variability (Pi) between Z. phycelloides and Z. mesochloa was of 0.02000, and seven loci with high variability were identified: psbA, trnSGCU-trnGUCC, trnDGUC-trnYGUA, trnLUAA-trnFGAA, rbcL, psbE-petL and ndhG-ndhI. The differences between the species are furthermore confirmed by the high amount of SNPs between these two species. Here, we report for the first time the complete cp genome of one species of the Zephyranthes subgenus Myostemma, which can be used for phylogenetic and population genomic studies.  相似文献   
70.
塔南绿洲生态系统持续发展近期优化模式   总被引:4,自引:1,他引:4  
基于对塔克拉玛干沙漠南缘各绿洲水资源的时空分布特征和目前各绿洲灌溉渠系利用系数的分析,通过野外对典型防护林防风效益的监测和风洞模拟实验,以及在塔克拉玛干沙漠南缘策勒绿洲进行了15年的沙漠化土地综合治理试验示范研究经验,提出了近期内塔克拉玛干沙漠南缘绿洲生态系统持续发展系列优化模式:塔克拉玛干沙漠南缘适度绿洲优化模式、塔克拉玛干沙漠南缘绿防护林结构优化模式、塔克拉玛干沙漠南缘荒漠化土地综合整治优化模  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号