首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   11篇
  国内免费   5篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   14篇
  2013年   11篇
  2012年   8篇
  2011年   10篇
  2010年   8篇
  2009年   12篇
  2008年   10篇
  2007年   11篇
  2006年   11篇
  2005年   10篇
  2004年   11篇
  2003年   6篇
  2002年   7篇
  2001年   7篇
  2000年   8篇
  1999年   10篇
  1998年   13篇
  1997年   7篇
  1996年   10篇
  1995年   7篇
  1994年   14篇
  1993年   8篇
  1992年   4篇
  1991年   10篇
  1990年   6篇
  1989年   2篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1977年   1篇
  1974年   2篇
排序方式: 共有314条查询结果,搜索用时 15 毫秒
61.
Evolving concepts in plant glycolysis: two centuries of progress   总被引:4,自引:0,他引:4  
Glycolysis, the process responsible for the conversion of monosaccharides to pyruvic acid, is a ubiquitous feature of cellular metabolism and was the first major biochemical pathway to be well characterized. Although the majority of glycolytic enzymes are common to all organisms, the past quarter of a century has revealed that glycolysis in higher plants possesses numerous distinctive features. Research in the nineteenth century established convincingly that plants carry out alcoholic fermentation under anaerobic conditions. In 1878, Wilhelm Pfeffer asserted that a non-oxygen-requiring ‘intramolecular respiration’ was involved in the aerobic respiration of plants. Between 1900 and 1950 it was demonstrated that plants metabolize sugar and starch by a glycolytic pathway broadly similar to that of yeasts and muscle tissue. In 1948, the first purification and characterization of a plant glycolytic enzyme, aldolase, was published by Paul Stumpf. By 1960 the presence of each of the 10 enzymes of glycolysis, presumed at the time to be located in the cytosol, had been confirmed in higher plants. Shortly after 1960 it was shown that the mechanism of glycolytic regulation in plants had features in common with that of animals and yeasts, especially as regards the important role played by the enzyme phosphofructokinase; but important regulatory properties peculiar to plants were soon demonstrated. In the last 30 years, higher-plant glycolysis has been found to exhibit a number of additional characteristics peculiar to plant systems. One conspicuous feature of plant glycolysis, discovered in the 1970s, is the presence of a complete or nearly complete sequence of glycolytic enzymes in plastids, distinct and spatially separated from the glycolytic enzymes located in the cytosol. Plastidic and cytosolic isoenzymes of glycolysis have been shown to differ in their kinetic and regulatory properties, suggesting that the two pathways are independently regulated. Since about 1980 it has become increasingly clear that the cytosolic glycolysis of plants may make use of several enzymes other than the conventional ones found in yeasts, muscle tissue and plant plastids: these enzymes include a pyrophosphate-dependent phosphofructokinase, a non-reversible and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, a phosphoenolpyruvate phosphatase (vacuolar location) and a three-enzyme sequence able to produce pyruvate from phosphoenolpyruvate avoiding the pyruvate-kinase step. These non-conventional enzymes may catalyze glycolysis in the plant cytosol especially under conditions of metabolic stress. Experiments on transgenic plants possessing significantly elevated or reduced (reduced to virtually nil in some cases) levels of glycolytic enzymes are currently playing an important part in improving our understanding of the regulation of plant glycolysis; such experiments illustrate an impressive degree of flexibility in the pathway's operation. Plant cells are able to make use of enzymes bypassing or substituting for several of the conventional enzymic steps in the glycolytic pathway; the extent and conditions under which these bypasses operate are the subject of current research. The duplication of the glycolytic pathway in plants and the flexible nature of the pathway have possibly evolved in relation to the crucial biosynthetic role played by plant glycolysis beyond its function in energy generation; both functions must proceed if a plant is to survive under varying and often stressful environmental or nutritional conditions.  相似文献   
62.
Metabolite changes in plant leaves during exposure to low temperatures involve re‐allocation of a large number of metabolites between sub‐cellular compartments. Therefore, metabolite determination at the whole cell level may be insufficient for interpretation of the functional significance of cellular compounds. To investigate the cold‐induced metabolite dynamics at the level of individual sub‐cellular compartments, an integrative platform was developed that combines quantitative metabolite profiling by gas chromatography coupled to mass spectrometry (GC‐MS) with the non‐aqueous fractionation technique allowing separation of cytosol, vacuole and the plastidial compartment. Two mutants of Arabidopsis thaliana representing antipodes in the diversion of carbohydrate metabolism between sucrose and starch were compared to Col‐0 wildtype before and after cold acclimation to investigate interactions of cold acclimation with subcellular re‐programming of metabolism. A multivariate analysis of the data set revealed dominant effects of compartmentation on metabolite concentrations that were modulated by environmental condition and genetic determinants. While for both, the starchless mutant of plastidial phospho‐gluco mutase (pgm) and a mutant defective in sucrose‐phosphate synthase A1, metabolic constraints, especially at low temperature, could be uncovered based on subcellularly resolved metabolite profiles, only pgm had lowered freezing tolerance. Metabolic profiles of pgm point to redox imbalance as a possible reason for reduced cold acclimation capacity.  相似文献   
63.
Glutathione peroxidase‐like enzymes (GPXLs) constitute a family of eight peroxidases in Arabidopsis thaliana. In contrast to the eponymous selenocysteine glutathione peroxidases in mammalian cells that use glutathione as electron donor, GPXLs rely on cysteine instead of selenocysteine for activity and depend on the thioredoxin system for reduction. Although plant GPXLs have been implicated in important agronomic traits such as drought tolerance, photooxidative tolerance and immune responses, there remain major ambiguities regarding their subcellular localization. Because their site of action is a prerequisite for an understanding of their function, we investigated the localization of all eight GPXLs in stable Arabidopsis lines expressing N‐terminal and C‐terminal fusions with redox‐sensitive green fluorescent protein 2 (roGFP2) using confocal microscopy. GPXL1 and GPXL7 were found in plastids, while GPXL2 and GPXL8 are cytosolic nuclear. The N‐terminal target peptide of GPXL6 is sufficient to direct roGFP2 into mitochondria. Interestingly, GPXL3, GPXL4 and GPXL5 all appear to be membrane bound. GPXL3 was found exclusively in the secretory pathway where it is anchored by a single N‐terminal transmembrane domain. GPXL4 and GPXL5 are anchored to the plasma membrane. Presence of an N‐terminal myristoylation motif and genetic disruption of membrane association through targeted mutagenesis point to myristoylation as essential for membrane localization.  相似文献   
64.
By following the solute exclusion technique, we determined the pore characteristics of 3 hardwood high-yield pulps (aspen, birch, maple). The fiber saturation point (FSP) was 1.40, 1.36 and 1.19 g water/g pulp, for aspen, birch, maple, respectively, which is lower than that of chemical pulps. Different fractions obtained from the Bauer–McNett classifier showed that the HYP fines have much more pore volume than their long fiber counterparts. The effects of beating, drying and re-wetting on the pore characteristics of HYP were also studied. Beating led to increased total pore volumes. Upon drying and re-wetting, much of the small pores from the HYP underwent permanent closure while the big pores were only slightly affected. Finally, the relationship between the water retention value (WRV) and FSP for HYP was examined.  相似文献   
65.
66.
The knock‐out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long‐day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism.  相似文献   
67.

Background

Currently available methods for contrast agent-based magnetic resonance imaging (MRI) and computed tomography (CT) of articular cartilage can only detect cartilage degradation after biochemical changes have occurred within the tissue volume. Differential adsorption of solutes to damaged and intact surfaces of cartilage may be used as a potential mechanism for detection of injuries before biochemical changes in the tissue volume occur.

Methods

Adsorption of four fluorescent macromolecules to surfaces of injured and sliced cartilage explants was studied. Solutes included native dextran, dextrans modified with aldehyde groups or a chondroitin sulfate (CS)-binding peptide and the peptide alone.

Results

Adsorption of solutes to fissures was significantly less than to intact surfaces of injured and sliced explants. Moreover, solute adsorption at intact surfaces of injured and sliced explants was less reversible than at surfaces of uninjured explants. Modification of dextrans with aldehyde or the peptide enhanced adsorption with the same level of differential adsorption to cracked and intact surfaces. However, aldehyde–dextran exhibited irreversible adsorption. Equilibration of explants in solutes did not decrease the viability of chondrocytes.

Conclusions and general significance

Studied solutes showed promising potential for detection of surface injuries based on differential interactions with cracked and intact surfaces. Additionally, altered adsorption properties at surfaces of damaged cartilage which visually look healthy can be used to detect micro-damage or biochemical changes in these regions. Studied solutes can be used in in vivo fluorescence imaging methods or conjugated with MRI or CT contrast agents to develop functional imaging agents.  相似文献   
68.
Wells  Darren M.  Miller  Anthony J. 《Plant and Soil》2000,221(1):103-106
The study of ammonium (NH4 +) transport across plant cell membranes requires accurate measurement of NH4 + gradients across subcellular gradients. We have developed an ammonium-selective microelectrode based on the ionophore nonactin. This electrode can detect NH4 + activities (aNH4) in vivo in the millimolar range in the presence of cytosolic levels of potassium, the main interfering ion. The electrode was used to measure intracellular aNH4 in internodal cells of the giant alga Chara corallina. Results from cells incubated in media supplemented with 1 mM NH4 + produced two populations, with means of 7.3 and 30.8 mM, respectively. HPLC analysis of vacuolar sap suggests the higher population represents vacuolar impalements, and the lower population can thus be assumed to be cytosolic. These results suggest a four-fold accumulation of NH4 + in the vacuolar compartment of Chara. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
69.
With the world-wide increase of patients with renal failure, the development of functional renal replacement therapies have gained significant interest and novel technologies are rapidly evolving. Currently used renal replacement therapies insufficiently remove accumulating waste products, resulting in the uremic syndrome. A more preferred treatment option is kidney transplantation, but the shortage of donor organs and the increasing number of patients waiting for a transplant warrant the development of novel technologies. The bioartificial kidney (BAK) is such promising biotechnological approach to replace essential renal functions together with the active secretion of waste products. The development of the BAK requires a multidisciplinary approach and evolves at the intersection of regenerative medicine and renal replacement therapy. Here we provide a concise review embracing a compact historical overview of bioartificial kidney development and highlighting the current state-of-the-art, including implementation of living-membranes and the relevance of extracellular matrices. We focus further on the choice of relevant renal epithelial cell lines versus the use of stem cells and co-cultures that need to be implemented in a suitable device. Moreover, the future of the BAK in regenerative nephrology is discussed.  相似文献   
70.
莳萝蒿是广泛分布在我国北方的一种特殊类型的菊科盐生植物,阐明莳萝蒿特殊的耐盐机制和生理特征有助于丰富植物抗盐性研究的内容。用0、100、200、300、400 mmol/L Na Cl处理莳萝蒿7 d后,比较莳萝蒿盐处理植株与对照植株在生长和生理方面的差异,并详细分析了Na+在莳萝蒿体内的积累水平和区域化方式。结果显示:莳萝蒿虽然能够耐受400 mmol/L Na Cl,但盐处理显著抑制了莳萝蒿的生长,整株鲜重随着盐处理浓度的升高逐渐减小。在水分生理方面,随着盐处理浓度的升高,莳萝蒿叶片细胞的渗透调节能力逐渐增强,其叶片肉质化程度却呈逐渐降低的趋势。分析盐处理对光合作用的影响发现,盐处理后莳萝蒿叶片光合速率与气孔导度显著下降,而其PSⅡ光化学活性并未受到抑制,叶绿素含量甚至逐渐增大,说明盐处理后莳萝蒿叶片光合速率的降低主要是由于气孔因素造成的,而不是由于光合结构被破坏。莳萝蒿体内的Na+含量随着盐处理浓度的升高显著增加,400 mmol/L Na Cl条件下叶、茎、根中的Na+含量分别高达321.4、242.1和182.3μmol/g鲜重;莳萝蒿体内的Na+70%以上积累在叶片内,而叶片内98%左右的Na+积累在叶片原生质体中,叶片原生质体中的Na+平均浓度是质外体1.2—1.8倍,推测其叶片细胞内存在着有效的Na+区域化机制。盐处理后莳萝蒿叶片液泡膜V-H+-ATPase的质子泵活性比对照增加了30%—50%,液泡膜Na+/H+逆向转运活性则增加至对照的4—7倍,进一步证实莳萝蒿叶片具有较强的液泡Na+区域化能力。随着盐处理浓度的升高,Na+在叶片中的分布比例相对减少,V-H+-ATPase的质子泵活性和Na+/H+逆向转运活性增幅也减缓。这种Na+区域化能力使莳萝蒿获得了较强的耐盐性,有效保护了其光系统,降低了细胞汁液渗透势。但是盐处理后这种耐盐方式并不能阻止莳萝蒿叶片肉质化程度和光合活性下降,莳萝蒿生长仍然受盐抑制,说明Na+区域化是莳萝蒿适应盐渍环境的必要条件而非充分条件。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号