首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   11篇
  国内免费   5篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   14篇
  2013年   11篇
  2012年   8篇
  2011年   10篇
  2010年   8篇
  2009年   12篇
  2008年   10篇
  2007年   11篇
  2006年   11篇
  2005年   10篇
  2004年   11篇
  2003年   6篇
  2002年   7篇
  2001年   7篇
  2000年   8篇
  1999年   10篇
  1998年   13篇
  1997年   7篇
  1996年   10篇
  1995年   7篇
  1994年   14篇
  1993年   8篇
  1992年   4篇
  1991年   10篇
  1990年   6篇
  1989年   2篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1977年   1篇
  1974年   2篇
排序方式: 共有314条查询结果,搜索用时 15 毫秒
31.
Umbilical cord blood (UCB) is an accepted treatment for the reconstitution of bone marrow function following myeloablative treatment predominantly in children and juveniles. Current cryopreservation protocols use methods established for bone marrow and peripheral blood progenitors cells that have largely been developed empirically. Such protocols can result in losses of up to 50% of the nucleated cell population: losses unacceptable for cord blood. The design of optimal cryopreservation regimes requires the development of addition and elution protocols for the chosen cryoprotectant; protocols that minimise damaging osmotic transients. The biophysical parameters necessary to model the addition and elution of dimethyl sulphoxide to and from cord blood CD34(+) cells have been established. An electronic particle counting method was used to establish the volumetric response of CD34(+) cells to changes in osmolality of the suspending medium. The non-osmotic volume of the cell was 0.27 of the cells isotonic volume. The permeation kinetics of CD34(+) cells to water and dimethyl sulphoxide were investigated at two temperatures, +1.5 and +20 degrees C. Values for the hydraulic conductivity were 3.2 x 10(-8) and 2.8 x 10(-7)cm/atm/s, respectively. Values for the permeability of dimethyl sulphoxide at these temperatures were 4.2 x 10(-7) and 7.4 x 10(-6)cm/s, respectively. Clonogenic assays indicated that the ability of CD34(+) cells to grow and differentiate was significantly impaired outside the limits 0.6-4x isotonic. Based on the Boyle van't Hoff plot, the tolerable limits for cell volume excursion were therefore 45-140% of isotonic volume. The addition and elution of cryoprotectant was modelled using a two-parameter model. Current protocols for the addition of cryoprotectant based on exposure at +4 degrees C would require additional time for complete equilibration of the cryoprotectant. During the elution phase current protocols are likely to cause CD34(+) cells to exceed tolerable limits. The addition of a short holding period during elution reduces the likelihood of this occurring.  相似文献   
32.
Pyruvate recycling was studied in primary cultures of mouse cerebrocortical astrocytes, GABAergic cerebrocortical interneurons, and co-cultures consisting of both cell types by measuring production of [4-13C]glutamate from [3-13C]glutamate by aid of nuclear magnetic resonance spectroscopy. This change in the position of the label can only occur by entry of [3-13C]glutamate into the tricarboxylic acid (TCA) cycle, conversion of labeled -ketoglutarate to malate or oxaloacetate, malic enzyme-mediated decarboxylation of malate to pyruvate or phosphoenolpyruvate carboxykinase-mediated conversion of oxaloacetate to phosphoenolpyruvate and subsequent hydrolysis of the latter to pyruvate, and introduction of the labeled pyruvate into the TCA cycle, i.e., after exit of the carbon skeleton of pyruvate from the TCA cycle followed by re-entry of the same pyruvate molecules via acetyl CoA. In agreement with earlier observations, pyruvate recycling was demonstrated in astrocytes, indicating the ability of these cells to undertake complete oxidative degradation of glutamate. The recycled [4-13C]glutamate was not further converted to glutamine, showing compartmentation of astrocytic metabolism. Thus, absence of recycling into glutamine in the brain in vivo cannot be taken as indication that pyruvate recycling is absent in astrocytes. No recycling could be demonstrated in the cerebrocortical neurons. This is consistent with a previously demonstrated lack of incorporation of label from glutamate into lactate, and it also indicates that mitochondrial malic enzyme is not operational. Nor was there any indication of pyruvate recycling in the co-cultures. Although this may partly be due to more rapid depletion of glutamate in the co-cultures, this observation at the very least indicates that pyruvate recycling is not up-regulated in the neuronal-astrocytic co-cultures.  相似文献   
33.
Metabolism of glutamine was determined under a variety of conditions to study compartmentation in cortical synaptosomes. The combined intracellular and extracellular amounts of [U-13C]GABA, [U-13C]glutamate and [U-13C]glutamine were the same in synaptosomes incubated with [U-13C]glutamine in the presence and absence of glucose. However, the concentration of these amino acids was decreased in the latter group, demonstrating the requirement for glucose to maintain the size of neurotransmitter pools. In hypoglycemic synaptosomes more [U-13C]glutamine was converted to [U-13C]aspartate, and less glutamate was re-synthesized from the tricarboxylic acid (TCA) cycle, suggesting use of the partial TCA cycle from -ketoglutarate to oxaloacetate for energy. Compartmentation was studied in synaptosomes incubated with glucose plus labeled and unlabeled glutamine and glutamate. Incubation with [U-13C]glutamine plus unlabeled glutamate gave rise to [U-13C]GABA but not labeled aspartate; however, incubation with [U-13C]glutamate plus unlabeled glutamine gave rise to [U-13C]aspartate, but not labeled GABA. Thus the endogenous glutamate formed via glutaminase in synaptic terminals is preferentially used for GABA synthesis, and is metabolized differently than glutamate taken up from the extracellular milieu.  相似文献   
34.
Küpper H  Lombi E  Zhao FJ  McGrath SP 《Planta》2000,212(1):75-84
The cellular compartmentation of elements was analysed in the Zn hyperaccumulator Arabidopsis halleri (L.) O'Kane & Al-Shehbaz (=Cardaminopsis halleri) using energy-dispersive X-ray microanalysis of frozen-hydrated tissues. Quantitative data were obtained using oxygen as an internal standard in the analyses of vacuoles, whereas a peak/background ratio method was used for quantification of elements in pollen and dehydrated trichomes. Arabidopsis halleri was found to hyperaccumulate not only Zn but also Cd in the shoot biomass. While large concentrations of Zn and Cd were found in the leaves and roots, flowers contained very little. In roots grown hydroponically, Zn and Cd accumulated in the cell wall of the rhizodermis (root epidermis), mainly due to precipitation of Zn/Cd phosphates. In leaves, the trichomes had by far the largest concentrations of Zn and Cd. Inside the trichomes there was a striking sub-cellular compartmentation, with almost all the Zn and Cd being accumulated in a narrow ring in the trichome base. This distribution pattern was very different from that for Ca and P. The epidermal cells other than trichomes were very small and contained lower concentrations of Zn and Cd than mesophyll cells. In particular, the concentrations of Cd and Zn in the mesophyll cells increased markedly in response to increasing Zn and Cd concentrations in the nutrient solution. This indicates that the mesophyll cells in the leaves of A. halleri are the major storage site for Zn and Cd, and play an important role in their hyperaccumulation. Received: 4 April 2000 / Accepted: 16 May 2000  相似文献   
35.
In many electroporation applications mass transport in biological tissue is of primary concern. This paper presents a theoretical advancement in the field and gives some examples of model use in electroporation applications. The study focuses on post-treatment solute diffusion.  相似文献   
36.
To cryopreserve cells, it is essential to avoid intracellular ice formation during cooling and warming. One way to do so is to subject them to procedures that convert cell water into a non-crystalline glass. Current belief is that to achieve this vitrification, cells must be suspended in very high concentrations of glass-inducing solutes (i.e., ?6 molal) and cooled at very high rates (i.e., ?1000 °C/min). We report here that both these beliefs are incorrect with respect to the vitrification of 8-cell mouse embryos. In this study, precompaction 8-cell embryos were vitrified in several dilutions of EAFS10/10 using various cooling rates and warming rates. Survival was based on morphology, osmotic functionality, and on the ability to develop to expanded blastocysts. With a warming rate of 117,500 °C/min, the percentages of embryos vitrified in 1×, 0.75×, and 0.5× EAFS that developed to blastocysts were 93%, 92%, and 83%, respectively. And the percentages of morphological survivors that developed to expanded blastocysts were 100%, 92%, and 97%, respectively. Even when the solute concentration of the EAFS was reduced to 33% of normal, we obtained 40% functional survival of these 8-cell embryos.  相似文献   
37.
The oxidative pentose phosphate pathway (OPPP) provides plants with important substrates for both primary and secondary metabolism via the oxidation of glucose-6-phosphate. The OPPP is also thought to generate large amounts of reducing power to drive various anabolic processes. In animals this major pathway is located within the cytoplasm of cells, but in plants its subcellular compartmentation is far from clear. Although several enzymes of the OPPP were demonstrated to have both cytosolic and plastidic counterparts, there is yet no evidence for a full set of functional enzymes in each compartment. We report here the isolation of two coding sequences from tomato (Lycopersicon esculentum L.) which encode phylogenetically distant sequences (ToTal1 and ToTal2) that putatively encode distinct plastidic TA isoforms. The kinetic characterization of ToTal1 revealed that, unlike other enzymes of the non-oxidative branch of the OPPP, ToTal1 does not follow a Michaelis-Menten mode of catalysis which has implications for its role in regulating carbon flux between primary and secondary metabolism. TA genes appear to be differentially regulated at the level of gene expression in plant tissues and in response to environmental factors which suggests that TA isoforms have a non-overlapping role for plant metabolism.  相似文献   
38.
This article challenges the common view that solutions and cold-hardy freeze-avoiding insects always freeze by heterogeneous nucleation. Data are presented to show that the nucleation temperatures of a variety of solutions and freeze-avoiding insects are a function of the water volume as described by the data previously published by Bigg in 1953. The article also points out that the relationships between melting point depression and depression of nucleation temperature are different for samples undergoing homogeneous nucleation and those undergoing heterogeneous nucleation. Aqueous solutions and freeze-avoiding insects display a relationship like that of homogeneously nucleated samples. It is also argued that the identity of the "impurities" assumed to cause heterogeneous nucleation in aqueous solutions and insects is obscure and that the "impurities" have features which make their existence rather unlikely.  相似文献   
39.
Cryopreservation currently is the only method for long-term preservation of cellular viability and function for uses in cellular therapies. Characterizing the cryobiological response of a cell type is essential in the approach to designing and optimizing cryopreservation protocols. For cells used in therapies, there is significant interest in designing cryopreservation protocols that do not rely on dimethyl sulfoxide (Me2SO) as a cryoprotectant, since this cryoprotectant has been shown to have adverse effects on hematopoietic stem cell (HSC) transplant patients. This study characterized the cryobiological responses of the human erythroleukemic stem cell line TF-1, as a model for HSC. We measured the osmotic parameters of TF-1 cells, including the osmotically-inactive fraction, temperature-dependent membrane hydraulic conductivity and the membrane permeability to 1 M Me2SO. A two-step freezing procedure (interrupted rapid cooling with hold time) and a graded freezing procedure (interrupted slow cooling without hold time) were used to characterize TF-1 cell recovery during various phases of the cooling process. One outcome of these experiments was high recovery of TF-1 cells cryopreserved in the absence of traditional cryoprotectants. The results of this study of the cryobiology of TF-1 cells will be critical for future understanding of the cryobiology of HSC, and to the design of cryopreservation protocols with specific design criteria for applications in cellular therapies.  相似文献   
40.
Synthesis of extracellular sulfated molecules requires active 3′-phosphoadenosine 5′-phosphosulfate (PAPS). For sulfation to occur, PAPS must pass through the Golgi membrane, which is facilitated by Golgi-resident PAPS transporters. Caenorhabditis elegans PAPS transporters are encoded by two genes, pst-1 and pst-2. Using the yeast heterologous expression system, we characterized PST-1 and PST-2 as PAPS transporters. We created deletion mutants to study the importance of PAPS transporter activity. The pst-1 deletion mutant exhibited defects in cuticle formation, post-embryonic seam cell development, vulval morphogenesis, cell migration, and embryogenesis. The pst-2 mutant exhibited a wild-type phenotype. The defects observed in the pst-1 mutant could be rescued by transgenic expression of pst-1 and hPAPST1 but not pst-2 or hPAPST2. Moreover, the phenotype of a pst-1;pst-2 double mutant were similar to those of the pst-1 single mutant, except that larval cuticle formation was more severely defected. Disaccharide analysis revealed that heparan sulfate from these mutants was undersulfated. Gene expression reporter analysis revealed that these PAPS transporters exhibited different tissue distributions and subcellular localizations. These data suggest that pst-1 and pst-2 play different physiological roles in heparan sulfate modification and development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号