首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102107篇
  免费   7601篇
  国内免费   3573篇
  2023年   1542篇
  2022年   1814篇
  2021年   3385篇
  2020年   3500篇
  2019年   4677篇
  2018年   4025篇
  2017年   2879篇
  2016年   2835篇
  2015年   3610篇
  2014年   6502篇
  2013年   7806篇
  2012年   4743篇
  2011年   6139篇
  2010年   4585篇
  2009年   5234篇
  2008年   5380篇
  2007年   5354篇
  2006年   4891篇
  2005年   4249篇
  2004年   3781篇
  2003年   3023篇
  2002年   2678篇
  2001年   1808篇
  2000年   1507篇
  1999年   1379篇
  1998年   1429篇
  1997年   1198篇
  1996年   1147篇
  1995年   1092篇
  1994年   1019篇
  1993年   836篇
  1992年   865篇
  1991年   728篇
  1990年   656篇
  1989年   558篇
  1988年   489篇
  1987年   465篇
  1986年   383篇
  1985年   545篇
  1984年   717篇
  1983年   470篇
  1982年   580篇
  1981年   459篇
  1980年   373篇
  1979年   368篇
  1978年   286篇
  1977年   253篇
  1976年   220篇
  1974年   143篇
  1973年   181篇
排序方式: 共有10000条查询结果,搜索用时 640 毫秒
921.
922.
923.
Abstract: Stable transfection of the human neuroblastoma cell line SH-SY5Y with the human 5-hydroxytryptamine2A (5-HT2A) or 5-HT2C receptor cDNA produced cell lines demonstrating ligand affinities that correlated closely with those for the corresponding endogenous receptors in human frontal cortex and choroid plexus, respectively. Stimulation of the recombinant receptors by 5-HT induced phosphoinositide hydrolysis with higher potency but lower efficacy at the 5-HT2C receptor (pEC50 = 7.80 ± 0.06) compared with the 5-HT2A receptor (pEC50 = 7.30 ± 0.08). Activation of the 5-HT2A receptor caused a transient fourfold increase in intracellular Ca2+ concentration. Whole-cell recordings of cells clamped at ?50 mV demonstrated a small inward current (2 pA) in response to 10 µM 5-HT for both receptors. There were no differences in potency or efficacy of phosphoinositide hydrolysis among four hallucinogenic [d-lysergic acid diethylamide (LSD), 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI), 5-methoxy-N,N-dimethyltryptamine, and mescaline] and three nonhallucinogenic drugs (m-chlorophenylpiperazine, quipazine, and ergotamine). Comparison of equipotent doses producing 20% of the maximal response induced by 5-HT revealed selective activation of the 5-HT2A receptor by LSD and to a lesser degree by DOI, mescaline, and ergotamine. Quipazine and 5-methoxy-N,N-dimethyltryptamine were relatively nonselective, whereas m-chlorophenylpiperazine selectively activated the 5-HT2C receptor. It is unlikely therefore that hallucinosis is mediated primarily by activity at the 5-HT2C receptor, whereas activity at the 5-HT2A receptor may represent an important but not unique mechanism associated with hallucinogenic drug action.  相似文献   
924.
ATP-Activated Nonselective Cation Current in NG108-15 Cells   总被引:5,自引:0,他引:5  
Abstract: ATP (1 mM) induced a biphasic increase in intracellular Ca2+ concentration ([Ca2+]i), i.e., an initial transient increase decayed to a level of sustained increase, in NG108-15 cells. The transient increase was inhibited by a phospholipase C inhibitor, 1-[6-[[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), whereas the sustained increase was abolished by removal of external Ca2+. We examined the mechanism of the ATP-elicited sustained [Ca2+]i increase using the fura-2 fluorescent method and the whole-cell patch clamp technique. ATP (1 mM) induced a membrane current with the reversal potential of 12.5 ± 0.8 mV (n = 10) in Tyrode external solution. The EC50 of ATP was ~0.75 mM. The permeability ratio of various cations carrying this current was Na+ (defined as 1) > Li+ (0.92 ± 0.01; n = 5) > K+ (0.89 ± 0.03; n = 6) > Rb+ (0.55 ± 0.02; n = 6) > Cs+ (0.51 ± 0.01; n = 5) > Ca2+ (0.22 ± 0.03; n = 3) > N-methyl-d -glucamine (0.13 ± 0.01; n = 5), suggesting that ATP activated a nonselective cation current. The ATP-induced current was larger at lower concentrations of external Mg2+. ATP analogues that induced the current were 2-methylthio-ATP (2MeSATP), benzoylbenzoic-ATP, adenosine 5′-thiotriphosphate (ATPγS), and adenosine 5′-O-(2-thiodiphosphate), but not adenosine, ADP, α,β-methylene-ATP (AMPCPP), β,γ-methylene-ATP (AMPPCP), or UTP. Concomitant with the current data, 2MeSATP and ATPγS, but not AMPCPP or AMPPCP, increased the sustained [Ca2+]i increase. We conclude that ATP activates a class of Ca2+-permeable nonselective cation channels via the P2z receptor in NG108-15 cells.  相似文献   
925.
926.
Abstract: C6 glioma cells were used as a model system to study the regulation of EAAC1-mediated Na+-dependent l -[3H]glutamate transport. Although a 30-min preincubation with forskolin had no effect on transport activity, preincubation with phorbol 12-myristate 13-acetate (PMA) increased transport activity two- to threefold. PMA caused a time-dependent and concentration-dependent increase in EAAC1-mediated l -[3H]glutamate transport activity. A 2-min preincubation with PMA was sufficient to cause more than a twofold increase in transport activity and the protein synthesis inhibitor cycloheximide had no effect on the increase. These data suggest that this increase is independent of protein synthesis. The EC50 value of PMA for stimulation of transport activity was 80 nM. Kinetic analyses demonstrated that the increase in transport activity was due to a 2.5-fold increase in Vmax with no change in Km. PMA also increased the transport of the nonmetabolizable analogue, d -[3H]aspartate to the same extent. In parallel assays, PMA did not, however, increase Na+-dependent glycine transport activity in C6 glioma. The inactive phorbol ester 4α-phorbol 12,13-didecanoate, did not stimulate l -[3H]glutamate transport activity, and the protein kinase C inhibitor chelerythrine blocked the stimulation caused by PMA. Okadaic acid and cyclosporin A, which are phosphatase inhibitors, had no effect on the stimulation of transport activity caused by PMA. The Ca2+ ionophore A23187 did not act synergistically to increase PMA stimulation. In previous studies, PMA caused a rapid increase in amiloride-sensitive Na+/H+ transport activity in C6 glioma. In the present study, pre- and coincubation with amiloride had no effect on the stimulation of transport activity caused by PMA. These studies suggest that activation of protein kinase C causes a rapid increase in EAAC1-mediated transport activity. This rapid increase in Na+-dependent l -[3H]-glutamate transport activity may provide a novel mechanism for protection against acute insults to the CNS.  相似文献   
927.
Abstract: Long-term (48-h) forskolin treatment of rat astroglial cells led to a slight decrease (30–40%) in the response to isoproterenol, vasoactive-intestinal peptide, guanyl 5'-(βγ-imido)diphosphate, guanosine 5'- O -(3-thiotriphosphate) [GTP(S)], and AIF4 in crude membrane fractions. In contrast, the acute stimulatory effect of forskolin was increased by 1.25–1.5-fold. These two opposite effects of forskolin were mediated by a cyclic AMP-dependent mechanism. No changes in Gsα, Giα, or Gβ protein levels could be determined by immunoblotting using specific antisera. No significant differences were observed in the ability of G proteins extracted from control and forskolin-treated cells to reconstitute a full adenylyl cyclase activity in membranes from S49 cyc cells, lacking Gsα protein. Gsα proteins were detected in two pools of membranes, one in the heavy sucrose fractions and the other in light sucrose fractions. Forskolin treatment of the cells shifted Gsα protein toward the light-density membranes. We did not find any significant change in the distribution of adenylyl cyclase. In contrast to the decreased stimulation of adenylyl cyclase activity by agonists acting via Gsα, observed in the crude membrane fraction, the responses of adenylyl cyclase to forskolin as well as to GTP(S) were increased in the purified plasma membrane fractions. These results may indicate that sensitization of the catalyst appears to be the dominant component in the astroglial cell response to long-term treatment by forskolin.  相似文献   
928.
Abstract: Neurons and glial cells are capable of synthesizing various steroid hormones, but biosynthesis of testosterone in the CNS has never been reported. The aim of the present study was to demonstrate the synthesis of testosterone in the frog brain. The presence of 17β-hydroxysteroid dehydrogenase (17β-HSD)-like immunoreactivity was detected in a population of glial cells located in the telencephalon. Reversed-phase HPLC analysis of brain tissue extracts combined with radioimmunoassay detection revealed the presence of substantial amounts of testosterone and 5α-dihydrotestosterone (5α-DHT) in the telencephalon where 17β-HSD-positive cells were visualized. In male frogs, castration totally suppressed testosterone and 5α-DHT in the blood and in the rhombencephalon but did not affect the concentration of these two steroids in the telencephalon. Chemical characterization of testosterone in female frog telencephalon extracts was performed by coupling HPLC analysis with gas chromatography-mass spectrometry. Using the pulse-chase technique with [3H]pregnenolone as a precursor, the formation of a series of metabolites was observed, including dehydroepiandrosterone, androstenedione, testosterone, 5α-DHT, and estradiol. These data demonstrate the existence of an active form of 17β-HSD in the frog telencephalon, which is likely involved in testosterone biosynthesis within the brain.  相似文献   
929.
Abstract: The effect of hypoxia on Na+,K+-ATPase and Na+-K+-Cl? cotransport activity in cultured rat brain capillary endothelial cells (RBECs) was investigated by measuring 86Rb+ uptake as a tracer for K+. RBECs expressed both Na+,K+-ATPase and Na+-K+-Cl? cotransport activity (4.6 and 5.5 nmol/mg of protein/min, respectively). Hypoxia (24 h) decreased cellular ATP content by 43.5% and reduced Na+,K+-ATPase activity by 38.9%, whereas it significantly increased Na+-K+-Cl? cotransport activity by 49.1% in RBECs. To clarify further the mechanism responsible for these observations, the effect of oligomycin-induced ATP depletion on these ion transport systems was examined. Exposure of RBECs to oligomycin led to a time-dependent decrease of cellular ATP content (by ~65%) along with a complete inhibition of Na+,K+-ATPase and a coordinated increase of Na+-K+-Cl? cotransport activity (up to 100% above control values). Oligomycin augmentation of Na+-K+-Cl? cotransport activity was not observed in the presence of 2-deoxy-d -glucose (a competitive inhibitor of glucose transport and glycolysis) or in the absence of glucose. These results strongly suggest that under hypoxic conditions when Na+,K+-ATPase activity is reduced, RBECs have the ability to increase K+ uptake through Na+-K+-Cl? cotransport.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号