首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13820篇
  免费   1725篇
  国内免费   3713篇
  19258篇
  2024年   90篇
  2023年   313篇
  2022年   302篇
  2021年   427篇
  2020年   565篇
  2019年   583篇
  2018年   606篇
  2017年   635篇
  2016年   665篇
  2015年   669篇
  2014年   671篇
  2013年   909篇
  2012年   590篇
  2011年   683篇
  2010年   487篇
  2009年   703篇
  2008年   719篇
  2007年   769篇
  2006年   837篇
  2005年   782篇
  2004年   613篇
  2003年   637篇
  2002年   523篇
  2001年   476篇
  2000年   385篇
  1999年   403篇
  1998年   371篇
  1997年   334篇
  1996年   310篇
  1995年   326篇
  1994年   296篇
  1993年   295篇
  1992年   295篇
  1991年   234篇
  1990年   240篇
  1989年   204篇
  1988年   202篇
  1987年   155篇
  1986年   149篇
  1985年   152篇
  1984年   138篇
  1983年   68篇
  1982年   109篇
  1981年   74篇
  1980年   79篇
  1979年   68篇
  1978年   32篇
  1977年   19篇
  1976年   16篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
51.
Alan Scaife 《Plant and Soil》1989,114(1):139-141
A simple simulation model is described to account for the rates at which plants take up nitrate and reduce it to protein. It is based on the pump and leak principle, with the pump working at a constant rate per unit sap volume provided that there is an adequate concentration of nitrate at the root surface. The rate of leakage is assumed to be proportional to the concentration difference between the inside and the outside of the plant. Nitrogen is removed from the plant nitrate pool (the buffer) at a constant fraction of the photosynthesis rate. When applied to data for the diurnal variation in nitrate uptake by ryegrass, the model predicts an uptake pattern similar to that actually observed, with a time lag of about 5 hours between photosynthesis and uptake.  相似文献   
52.
Of the biogeochemical processes, denitrification has perhaps been the most difficult to study in the field because of the inability to measure the product of the process. The last decade of research, however, has provided both acetylene and15N based methods as well as undisturbed soil core andin situ soil cover sampling approaches to implementing these methods. All of these methods, if used appropriately, give comparable results. Thus, we now have several methods, each with advantages for particular sites or objectives, that accurately measure denitrification in nature. Because of the general usefulness of the acetylene methods, updated protocols for the following three methods are given: gas-phase recirculation soil cores; static soil cores; and the denitrifying enzyme assay also known as the phase 1 assay. Despite the availability of these and other methods, denitrification budgets remain difficult to accurately establish in most environments because of the high spatial and temporal variability inherent in denitrification. Appropriate analysis of those data includes a distribution analysis of the data, and if highly skewed as is typically the case, the most accurate method to estimate the mean and the population variance is the UMVUE method (uniformly minimum variance unbiased estimator). Geostatistical methods have also been employed to improve spatial and temporal estimates of denitrification. These have occasionally been successful for spatial analysis but in the attempt described here for temporal analysis the approach was not useful.Discussions of the importance of denitrification have always focused on quantifying the process and whether particular measured quantities are judged to be a significant amount of nitrogen. A second line of evidence discussed here is the extant genetic record that results from natural selection. These analysis lead to the conclusion that strong selection for denitrification must currently be occurring, which implies that the process is of general significance in soils.  相似文献   
53.
Rooted cuttings ofCeanothus griseus varhorizontalis were irrigated with 0, 10, 20, 50, 75 or 100ppm nitrogen as NH4NO3 for eight weeks prior to inoculation with infectiveFrankia. After inoculation, half of the plants for each treatment nitrogen level continued to be irrigated with the preconditioning nitrogen level and half were given no more supplemental nitrogen. For plants continuously receiving nitrogen, nodule initiation (nodule number) was inversely correlated with increasing supplemental nitrogen levels, and suppressed above 50 ppm N. Leaf nitrogen above 2% in continuous-N plants correlated with greatly reduced or suppressed nodulation. Plants maintained after inoculation without supplemental nitrogen showed influence of the prior nitrogen treatment on nodulation. Preconditioning at 50 ppm and above greatly reduced the number of nodules formed. The evidence suggests that stored internal nitrogen can regulate nodulation.Plant biomass accumulated maximally when nodulation was suppressed, at 75 and 100 ppm supplemental N applied continuously. Internode elongation during the nodulation period occurred only on nodulated plants, or in the presence of supplemental N (10 ppm and above).  相似文献   
54.
This paper presents information about the release of nitrogen and phosphorus from dying grass roots and the capture of phosphorus by other, living plants. We have paid particular attention to the part played by mycorrhizas in this phosphorus capture, and the possible importance of mycorrhizal links between dying and living roots.WhenLolium perenne plants were grown with ample nutrients and their roots then detached and buried in soil, about half the nitrogen and two-thirds of the phosphorus was lost in three weeks, but only one-fifth of the dry weight. The C:N and C:P ratios suggest that microbial growth in the roots would at first be C-limited but would become N- and P-limited within three weeks.Rapid transfer of32P can occur from dying roots to those of a living plant if the two root systems are intermingled. The amount transferred was substantially increased in two species-combinations that are known to form mycorrhizal links between their root systems. In contrast, in a species-combination where only the living (receiver) plant could become mycorrhizal no significant increase of32P transfer occurred. This evidence, although far from conclusive, suggests that mycorrhizal links between dying and living roots can contribute to nutrient cycling. This research indicates a major difference in nutrient cycling processes between perennial and annual crops.  相似文献   
55.
Spatial variations in soil processes regulating mineral N losses to streams were studied in a small watershed near Toronto, Ontario. Annual net N mineralization in the 0–8 cm soil was measured in adjacent upland and riparian forest stands using in situ soil incubations from April 1985 to 1987. Mean annual rates of soil N mineralization and nitrification were higher in a maple soil (93.8 and 87.0 kg.ha–1) than in a pine soil (23.3 and 8.2 kg.ha–1 ). Very low mean rates of mineralization (3.3 kg.ha–1) and nitrification (3.4 kg.ha–1) were found in a riparian hemlock stand. Average NO3-N concentrations in soil solutions were 0.3–1.0 mg.L–1 in the maple stand and >0.06mg.L–1 in the pine stand. Concentrations of NO3–N in shallow ground water and stream water were 3–4× greater in a maple subwatershed than in a pine subwatershed. Rapid N uptake by vegetation was an important mechanism reducing solution losses of NO3–N in the maple stand. Low rates of nitrification were mainly responsible for negligible NO3–N solution losses in the pine stand.  相似文献   
56.
Nitrogen dynamics in two antarctic streams   总被引:1,自引:1,他引:0  
The many glacier meltwater streams of southern Victoria Land flow through catchments where life forms are almost entirely microbial. Allochthonous inputs of nitrogen from two study streams near McMurdo Sound were derived mostly from the melting glaciers (ca. 100–200 mg N m–3) with some originating from N2-fixation by heterocystous cyanobacteria (max. 939 mg N m–2 year–1). Thirty to fifty per cent of the glacier derived N was dissolved organic N and a major proportion of this was identified as urea N which was utilised by the rich algal and cyanobacterial mats in the streams. A nutrient budget for Fryxell Stream was estimated, quantifying uptake of urea-N and dissolved inorganic N and the release of dissolved organic (non urea) and particulate N by the stream communities. An index of in-stream nitrogen processing, the Net Uptake Length Constant in these streams was compared with that from temperate climates and was found to be similar. Despite the influence of low temperatures on microbial activity (mean daily water temperature = 5 °C) nutrient removal rates from these antarctic streams are high because of the large standing stock of microbial biomass there.  相似文献   
57.
Medicago truncatula has all the characteristics required for a concerted analysis of nitrogen-fixing symbiosis withRhizobium using the tools of molecular biology, cellular biology and genetics.M. truncatula is a diploid and autogamous plant has a relatively small genome, and preliminary molecular analysis suggests that allelic heterozygosity is minimal compared with the cross-fertilising tetraploid alfalfa (Medicago sativa). TheM. truncatula cultivar Jemalong is nodulated by theRhizobium meliloti strain 2011, which has already served to define many of the bacterial genes involved in symbiosis with alfalfa. A genotype of Jemalong has been identified which can be regenerated after transformation byAgrobacterium, thus allowing the analysis ofin-vitro-modified genes in an homologous transgenic system. Finally, by virtue of the diploid, self-fertilising and genetically homogeneous character ofM. truncatula, it should be relatively straightforward to screen for recessive mutations in symbiotic genes, to carry out genetic analysis, and to construct an RFLP map for this plant.  相似文献   
58.
The photosynthetic behaviour ofDunaliella viridis has been studied under a combination of three variables: irradiance (0–900 mol m–2 s–1), temperature (15, 23, 31, 38, 42 °C) and nitrogen concentration (0.05, 0.5, 1.5, 5, 10 mM NO 3 - ) at a salinity of 2 M NaCl.The highest rates of photosynthesis have been found at 31 °C and a nitrate concentration of 10 mM. There exists a synergistic effect between temperature and nitrogen availability on the photosynthesis ofD. viridis; under nitrogen deficiency oxygen evolution is low, even null at high temperature. The interaction between these two variables of control occurs in a multiplicative way. There is also a general increase in photosynthetic pigments following the increase in nitrogen concentration in the culture medium. The normalization of net photosynthesis data in relation to chlorophylla shows that nitrogen concentration makes an indirect control of the photosynthetic rate ofD. viridis through the variation of pigment concentration.  相似文献   
59.
A role for haemoglobin in all plant roots?   总被引:4,自引:2,他引:2  
Abstract. We have found haemoglobin in plant roots whereas previously it has been recorded only in nitrogen fixing nodules of plants. Haemoglobin occurs not only in the roots of those plants that are capable of nodulation but also in the roots of species that are not known to nodulate. We suggest that a haemoglobin gene may be a component of the genome of all plants. The gene structure and sequence in two unrelated families of plants suggests that the plant haemoglobins have had a single origin and that this origin relates to the haemoglobin gene of the animal kingdom. At present we cannot completely rule out the possibility of a horizontal transfer of the gene from the animal kingdom to a progenitor of the dicotyledonous angiosperms but we favour a single origin of the gene from a progenitor organism to both the plant and animal kingdoms. We speculate about the possible functions of haemoglobin in plant roots and put the case that it is unlikely to have a function in facilitating oxygen diffusion. We suggest that haemoglobin may act as a signal molecule indicating oxygen deficit and the consequent need to shift plant metabolism from an oxidative to a fermentative pathway of energy generation.  相似文献   
60.
The relative importance of nitrogen inputs from atmospheric deposition and biological fixation is reviewed in a number of diverse, non-agricultural terrestrial ecosystems. Bulk precipitation inputs of N (l–l2 kg N ha–1 yr–1) are the same order of magnitude as, or frequently larger than, the usual range of inputs from nonsymbiotic fixation (< 1=" –=" 5=" kg=" n=">–1 yr–1), especially in areas influenced by industrial activity. Bulk precipitation measurements may underestimate total atmospheric deposition by 30–40% because they generally do not include all forms of wet and dry deposition. Symbiotic fixation generally ranges from 10–160 kg N ha–1 yr–1) in ecosystems where N-fixing species are present during early successional stages, and may exceed the range under unusual conditions.Rates of both symbiotic and nonsymbiotic fixation appear to be greater during early successional stages of forest development, where they have major impacts on nitrogen dynamics and ecosystem productivity. Fates and impacts of these nitrogen inputs are important considerations that are inadequately understood. These input processes are highly variable in space and time, and few sites have adequate comparative information on both nitrogen deposition and fixation.
–  - more intensive studies of total atmospheric deposition, especially of dry deposition, are needed over a wide range of ecosystems;
–  - additional studies of symbiotic fixation are needed that carefully quantify variation over space and time, examine more factors regulating fixation, and focus upon the availability of N and its effects upon productivity and other nutrient cycling processes;
–  - process-level studies of associative N-fixation should be conducted over a range of ecosystems to determine the universal importance of rhizosphere fixation;
–  - further examination of the role of free-living fixation in wood decomposition and soil organic matter genesis is needed, with attention upon spatial and temporal variation; and
–  - investigations of long-term biogeochemical impacts of these inputs must be integrated with process-level studies using modern modelling techniques.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号