首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3340篇
  免费   247篇
  国内免费   896篇
  4483篇
  2024年   6篇
  2023年   28篇
  2022年   46篇
  2021年   72篇
  2020年   47篇
  2019年   62篇
  2018年   68篇
  2017年   91篇
  2016年   87篇
  2015年   82篇
  2014年   111篇
  2013年   126篇
  2012年   72篇
  2011年   139篇
  2010年   120篇
  2009年   246篇
  2008年   279篇
  2007年   258篇
  2006年   327篇
  2005年   263篇
  2004年   221篇
  2003年   198篇
  2002年   135篇
  2001年   106篇
  2000年   108篇
  1999年   91篇
  1998年   106篇
  1997年   85篇
  1996年   60篇
  1995年   62篇
  1994年   61篇
  1993年   59篇
  1992年   53篇
  1991年   43篇
  1990年   53篇
  1989年   29篇
  1988年   21篇
  1987年   41篇
  1986年   55篇
  1985年   75篇
  1984年   52篇
  1983年   28篇
  1982年   52篇
  1981年   39篇
  1980年   48篇
  1979年   45篇
  1977年   5篇
  1975年   4篇
  1973年   5篇
  1971年   4篇
排序方式: 共有4483条查询结果,搜索用时 15 毫秒
81.
Abstract The competitive saprophytic interaction between pathogenic and non-pathogenic strains of Fusarium oxysporum was investigated by studying their ability to competitively colonize sterilized soil. It was demonstrated that carbon was the first limiting substrate of Fusarium oxysporum growth in sterilized soil. Moreover, the efficiency with which glucose was utilized in the formation of propagules varied from one strain to another. Results of competitiion experiments showed that a linear relationship existed between the ratio of inoculum densities at the plateau (carrying capacity) and the ratio of inoculum densities incorporated into non-amended sterilized soil. The slope of the regression line indicated the competitiveness index, i.e. the competitiveness of a non-pathogenic strain in relation to that of a pathogenic strain. This parameter could be related to the yield coefficient of the strains in glucose-amended soil.  相似文献   
82.
Measurement of soil microbial biomass and abundance offers a means of assessing the response of all microbial populations to changes in the soil environment after a fire. We examined the effects of wildfire on microbial biomass C and N, and abundance of bacteria and fungi 2 months after a fire in a pine plantation. Soil organic carbon (Corg), total nitrogen (Ntot), and electrical conductivity (EC) increased following the fire. In terms of microbial abundance, the overall results showed that burned forest soils had the most bacteria and fungi. Microbial biomass C and N from soil in the burned forest were not significantly different from their unburned forest counterparts. However, microbial indices indicated that fire affects soil microbial community structure by modifying the environmental conditions. The results also suggested that low-intensity fire promotes microorganism functional activity and improves the chemical characteristics of soils under humid climatic conditions.  相似文献   
83.
84.
Actinomycetes are known for their secondary metabolites, which have been successfully used as drugs in human and veterinary medicines. However, information on the distribution of this group of Gram-positive bacteria in diverse ecosystems and a comprehension of their activities in ecosystem processes are still scarce. We have developed a 16S rRNA-based taxonomic microarray that targets key actinomycetes at the genus level. In total, 113 actinomycete 16S rRNA probes, corresponding to 55 of the 202 described genera, were designed. The microarray accuracy was evaluated by comparing signal intensities with probe/target-weighted mismatch values and the Gibbs energy of the probe/target duplex formation by hybridizing 17 non-actinomycete and 29 actinomycete strains/clones with the probe set. The validation proved that the probe set was specific, with only 1.3% of false results. The incomplete coverage of actinomycetes by a genus-specific probe was caused by the limited number of 16S rRNA gene sequences in databases or insufficient 16S rRNA gene polymorphism. The microarray enabled discrimination between actinomycete communities from three forest soil samples collected at one site. Cloning and sequencing of 16S rRNA genes from one of the soil samples confirmed the microarray results. We propose that this newly constructed microarray will be a valuable tool for genus-level comparisons of actinomycete communities in various ecological conditions.  相似文献   
85.
亚热带山区红壤地碳平衡研究进展   总被引:1,自引:1,他引:1  
碳平衡研究日益成为全球变化与地球科学研究领域的热点问题.亚热带红壤区是我国发展粮食作物和各种热带、亚热带经济作物与林木的重要基地,因该区特殊的生态地理位置,在我国碳平衡研究中占有重要地位.本文论述了亚热带山区红壤地碳平衡研究的重要性,对碳平衡研究中植被、凋落物、土壤碳库和土壤呼吸的研究现状和主要结论等进行阐述,总结了碳平衡的综合研究方法,并对亚热带山区红壤地碳平衡研究中存在的问题和今后的发展方向进行探讨.  相似文献   
86.
Clonal fragments of the stoloniferous herb Glechoma longituba were subjected to a complementary patchiness of light and soil nutrients including two spatially homogeneous treatments (SR–SR and IP–IP) and two spatially heterogeneous treatments (IP–SR and SR–IP). SR and IP indicate patches (shaded, rich) with low light intensity (shaded, S), high nutrient availability (rich, R) and patches (illuminated, poor) with high light intensity (illuminated, I) and low nutrient availability (poor, P), respectively. Plasticity of the species in root–shoot ratio, fitness-related traits (biomass, number of ramets and dry weight per ramet) and clonal morphological traits (length and specific length of stolon internodes, area and specific area of laminae, length and specific length of petioles) were experimentally examined. The aim is to understand adaptation of G. longituba to the environment with reciprocal patches of light and soil nutrients by plasticities both in root–shoot ratio and in (clonal) morphology. Our experiment revealed performance of the clonal fragments growing from patches with high light intensity and low soil nutrient availability into the adjacent opposite patches was increased in terms of the fitness-related characters. R/S ratio and clonal morphology were plastic. Meanwhile, the capture of light resource from the light-rich patches was enhanced while the capture of soil nutrients from either the nutrient-rich or the nutrient-poor patches was not. Analysis of cost and benefit disclosed positive effects of clonal integration on biomass production of ramets in the patches with low light intensity and high soil nutrient availability. These results suggest an existence of reciprocal translocation of assimilates and nutrients between the interconnected ramets. The reinforced performance of the clonal fragments seems to be related with specialization of clonal morphology in the species.  相似文献   
87.
Summary The focus of this review is to examine some of the reasons biodegradation may not take place in the environment even though its occurrence in the laboratory has been demonstrated. Some approaches for dealing with chemical persistence will be discussed. In addition, the potential of bioremediation as an in situ clean-up technology will be considered.  相似文献   
88.
Large‐scale conversion of traditional agricultural cropping systems to biofuel cropping systems is predicted to have significant impact on the hydrologic cycle. Changes in the hydrologic cycle lead to changes in rainfall and its erosive power, and consequently soil erosion that will have onsite impacts on soil quality and crop productivity, and offsite impacts on water quality and quantity. We examine regional change in rainfall erosivity and soil erosion resulting from biofuel policy‐induced land use/land cover (LULC) change. Regional climate is simulated under current and biofuel LULC scenarios for the period 1979–2004 using the Weather Research Forecast (WRF) model coupled to the NOAH land surface model. The magnitude of change in rainfall erosivity under the biofuel scenario is 1.5–3 times higher than the change in total annual rainfall. Over most of the conterminous United States (~56%), the magnitude of the change in erosivity is between ?2.5% and +2.5%. A decrease in erosivity of magnitude 2.5–10% is predicted over 23% of the area, whereas an increase of the same magnitude is predicted over 14% of the area. Corresponding to the changes in rainfall erosivity and crop cover, a decrease in soil loss is predicted over 60% of the area under the biofuel scenario. In Kansas and Oklahoma, the states in which a large fraction of land area is planted with switchgrass under the biofuel scenario, soil loss is estimated to decrease 12% relative to the baseline. This reduction in soil loss is due more to changes in the crop cover factor than changes in rainfall or rainfall erosivity. This indicates that the changes in LULC, due to future cellulosic biofuel feedstock production, can have significant implications for regional soil and water resources in the United States and we recommend detailed investigation of the trade‐offs between land use and management options.  相似文献   
89.
In this paper, we propose a structure for organo-mineral associations in soils based on recent insights concerning the molecular structure of soil organic matter (SOM), and on extensive published evidence from empirical studies of organo-mineral interfaces. Our conceptual model assumes that SOM consists of a heterogeneous mixture of compounds that display a range of amphiphilic or surfactant-like properties, and are capable of self-organization in aqueous solution. An extension of this self-organizational behavior in solution, we suggest that SOM sorbs to mineral surfaces in a discrete zonal sequence. In the contact zone, the formation of particularly strong organo-mineral associations appears to be favored by situations where either (i) polar organic functional groups of amphiphiles interact via ligand exchange with singly coordinated mineral hydroxyls, forming stable inner-sphere complexes, or (ii) proteinaceous materials unfold upon adsorption, thus increasing adhesive strength by adding hydrophobic interactions to electrostatic binding. Entropic considerations dictate that exposed hydrophobic portions of amphiphilic molecules adsorbed directly to mineral surfaces be shielded from the polar aqueous phase through association with hydrophobic moieties of other amphiphilic molecules. This process can create a membrane-like bilayer containing a hydrophobic zone, whose components may exchange more easily with the surrounding soil solution than those in the contact zone, but which are still retained with considerable force. Sorbed to the hydrophilic exterior of hemimicellar coatings, or to adsorbed proteins, are organic molecules forming an outer region, or kinetic zone, that is loosely retained by cation bridging, hydrogen bonding, and other interactions. Organic material in the kinetic zone may experience high exchange rates with the surrounding soil solution, leading to short residence times for individual molecular fragments. The thickness of this outer region would depend more on input than on the availability of binding sites, and would largely be controlled by exchange kinetics. Movement of organics into and out of this outer region can thus be viewed as similar to a phase-partitioning process. The zonal concept of organo-mineral interactions presented here offers a new basis for understanding and predicting the retention of organic compounds, including contaminants, in soils and sediments.  相似文献   
90.
Summary To study the origin of replant disease of Ammophila arenaria (L.) Link the growth and development in sand originating from the rhizosphere of a natural Ammophila vegetation was compared with the growth in sand from the sea-floor. In a greenhouse experiment, the growth of Ammophila seedlings in rhizosphere sand, when compared with that in sea sand, was significantly reduced. As sterilization by means of gamma-irradiation increased the biomass production of Ammophila seedlings significantly, it was concluded that the rhizosphere sand contained biotic factors that were harmful to Ammophila. In rhizosphere sand the roots of Ammophila were brown and poorly developed, and the specific uptake rates of N, P and K were reduced. The shoot weight proportion of the total plant dry matter was hardly influenced. In an outdoor experiment with Ammophila seedlings and cuttings, using both sands, the mortality was high and the plants were feeble in rhizosphere sand whereas plants in sea sand grew vigorously. It seems plausible that the plants in rhizophere sand were dessicated because the root system was shallow and badly developed. In the greenhouse experiments, Ammophila cuttings were less sensitive to the inhibiting factors in the rhizosphere than seedlings. This was confirmed in the outdoor experiment. Calammophila baltica (Fluegge ex Schrader) Brand, however, was hardly affected by the harmful biotic factors in the greenhouse. These results are discussed with reference to the ecology of Ammophila. It is assumed that the catching of fresh windblown sand provides Ammophila with a way to escape from harmful biotic soil factors, and it was concluded that degeneration of Ammophila is caused mainly by self-intolerance due to these biotic soil factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号