首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1514篇
  免费   60篇
  国内免费   30篇
  2023年   14篇
  2022年   18篇
  2021年   19篇
  2020年   29篇
  2019年   21篇
  2018年   18篇
  2017年   21篇
  2016年   9篇
  2015年   31篇
  2014年   68篇
  2013年   93篇
  2012年   75篇
  2011年   145篇
  2010年   70篇
  2009年   58篇
  2008年   70篇
  2007年   71篇
  2006年   69篇
  2005年   46篇
  2004年   46篇
  2003年   34篇
  2002年   47篇
  2001年   20篇
  2000年   26篇
  1999年   24篇
  1998年   19篇
  1997年   20篇
  1996年   20篇
  1995年   20篇
  1994年   25篇
  1993年   18篇
  1992年   23篇
  1991年   25篇
  1990年   20篇
  1989年   22篇
  1988年   12篇
  1987年   17篇
  1986年   20篇
  1985年   26篇
  1984年   32篇
  1983年   23篇
  1982年   22篇
  1981年   29篇
  1980年   17篇
  1979年   8篇
  1978年   8篇
  1977年   12篇
  1976年   5篇
  1975年   6篇
  1973年   5篇
排序方式: 共有1604条查询结果,搜索用时 31 毫秒
61.
Abstract: Transport and permeability properties of the blood-brain and blood-CSF barriers were determined by kinetic analysis of radioisotope uptake from the plasma into the CNS of the adult rat. Cerebral cortex and cerebellum uptake curves for 36Cl and 22Na were resolved into two components. The fast component (t½ 0.02–0.05 h, fractional volume 0.04–0.08) is comprised of the vascular compartment and a small perivascular space whereas the slow component (t½ 1.06–1.69 h, fractional volume 0.92–0.96) represents isotope movement across the blood-brain barrier into the brain extracellular and cellular compartments. Uptake curves of both 36Cl and 22Na into the CSF were also resolved into two components, a fast component (t½ 0.18 h, fractional volume 0.24) and a slow component (t½ 1.2 h, fractional volume 0.76). Evidence suggests that the fast component represents isotope movement across the blood-CSF barrier, i.e., the choroid plexuses, whereas the CSF slow component probably reflects isotope penetration primarily from the brain extracellular fluid into the CSF. The extracellular fluid volume of the cerebral cortex and cerebellum was estimated as ?13% from the initial slope of the curve of brain space versus CSF space curve for both 36Cl and 22Na. Like the choroid plexuses, the glial cell compartment of the brain appears to accumulate Cl from 2 to 6 times that predicted for passive distribution. The relative permeability of the blood-CSF and blood-brain barriers to 36Cl, 22Na, and [3H]mannitol was determined by calculating permeability surface-area products (PA). Analysis of the PA values for all three isotopes indicates that the effective permeability of the choroidal epithelium (blood/CSF barrier) is significantly greater than that of the capillary endothelium in the cerebral cortex and cerebellum (blood-brain barrier).  相似文献   
62.
Summary To ensure adequate growth of plants on the highly impoverished and erodable surface mined lands, the application of N and P fertilizers by suitable methods is essential. In the present study, five growth chamber experiments were conducted to evaluate the relative efficacy of foliar and spoil application of N and P using alfalfa (Medicago sativa L. var. Erand) and barley (Hordeum vulgare L. var. Manker) as test crops on a freshly exposed coal mine spoil collected from western North Dakota. In general, barley responded to both N and P, but alfalfa mainly to P. Growth responses of barley to foliar or spoil-applied N+P were substantial and similar in magnitude. However, the yields were much higher when the plants received 3–4 sprays of 1.5–2.2% urea, with P supplied through the spoil. Increasing the number of 2.2% urea sprays from 1 to 3 increased the growth response from 40 to 243%. In another study, increasing the concentration of foliar-applied urea from 0 through 1% resulted in further increases in the dry weights of barley at all the levels of spoil-applied (0, 25, 75, 225 g/g) N.Foliar sprays of 0.5–1.0% NaH2PO4 increased the dry weights of alfalfa and barley by an average of 366% and 86%, respectively. However, the yield response of alfalfa to spoil-applied P (100 g/g) was as high as 782% compared to only 117% for barley. Alfalfa responded significantly to increasing concentrations of H3PO4 (0–0.3%) in foliar sprays only in the absence of spoil-applied P. With increasing rates of spoil-applied P, alfalfa yields increased steadily, but additional supply of P sprays caused leaf burning which intensified as the P concentration in sprays increased.The results of chemical analyses indicated that foliar applications were more effective than soil applications in increasing the concentration of N or P in the plants. Moreover, urea sprays increased the uptake of K, Zn, and Fe in barley, whereas spraying alfalfa with P compounds caused increases in its K and Fe content and decreases in those of Zn and Na. The results of these experiments indicated that the nutritional requirements of plants grown on coal mine spoils can be met through foliar fertilization as effectively as, or better than, through conventional soil fertilization methods.Presented at the Annual Meeting, American Society of Agronomy, Chicago, Illinois, Dec. 3–8, 1978.  相似文献   
63.
Summary A cell line resistant to sodium chloride was selected from callus cultures of haploidDatura innoxia by cloning under selective pressure. Cells of the resistant cell line retained their resistance even after subculture in absence of NaCl. Plantlets could be regenerated from resistant cells in the presence as well as absence of NaCl. In contrast, regeneration of plantlets was not possible from normal cells in the presence of NaCl, although regeneration readily occurred in the absence of NaCl.To examine the stability of the resistance in the long-term, callus cultures were initiated in presence of NaCl from stem expiants of the differentiated plantlets. All expiants of plantlets derived from resistant cells showed callus formation. This callus, derived from resistant explants, retained the trait of resistance upon subculture.  相似文献   
64.
65.
66.
BackgorundCowpea is a crop widely used in developing countries due its rusticity. Besides its rich genotypic variability, most breeding programs do not explore its potential to improve elements uptake. Selenium (Se) is a scarce element in most soils, resulting in its deficiency being common in human diets. This study aimed to evaluate the interaction between biofortification with Se and genotypic variation in cowpea, on the concentrations of Se in roots, leaves + stem and grains.MethodsTwenty-nine cowpea genotypes were grown in a greenhouse in the absence (control) and presence of Se (12.5 μg Se kg−1 soil) as sodium selenate, in fully randomized scheme. The plants were cultivated until grains harvest. The following variables were determined: roots dry weight (g), leaves + stems dry weight (g), grains dry weight (g), Se concentration (mg kg−1) in roots, leaves + stems and grains, and Se partitioning to shoots and grains.ResultsSelenium application increased the Se concentration in roots, leaves + stems and grains in all genotypes. At least twofold variation in grain Se concentration was observed among genotypes. Selenium application did not impair biomass accumulation, including grain dry weight. Genotype “BRS Guariba” had the largest Se concentration in grains and leaves + stems. Genotype MNC04-795 F-158 had the largest partitioning of Se to shoots and grain, due to elevated dry weights of leaves + stems and grain, and high Se concentrations in these tissues.ConclusionThis information might be valuable in future breeding programs to select for genotypes with better abilities to accumulate Se in grain to reduce widespread human Se undernutrition.  相似文献   
67.
The main objective of our study was to illuminate effects of sodium selenite (Na2SeO3) on growth, metabolism and enzyme activities of Cordyceps militaris. By adding Na2SeO3 in fermentation medium (7 mg/L), it was found that mycelium of C. militaris was stronger with more plump spores and its biomass was higher accompanied by the maximum (13.19 g/L) at 6 d of culture. Besides, Na2SeO3 also caused the enhancement of total thiol (T-SH), non-protein thiol (NP-SH) contents and the biosynthesis of Se-polysaccharide (Se-CMP) with discriminatory molecular weight, optical rotation, UV–vis and FT-IR spectra. Activities of antioxidase including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and enzymes involved in polysaccharide synthesis including phosphoglucomutase (PGM), phosphoglucose isomerase (PGI), UDPG-pyrophosphorylase (UGP) enhanced to different extent. Their corresponding genes were also up-regulated but cat gene (encoding CAT). Se-enrichment of C. militaris provided a good way for desirable biomass and polysaccharide biosynthesis in further research.  相似文献   
68.
Background and aimSodium nitrite (NaNO2) is an inorganic salt with numerous applications in a variety of industries, as well as in medicine. Nevertheless, exposure to high levels of NaNO2 is toxic for animals and humans. Sodium nitrite intoxication is shown to decrease the activity of major antioxidant defence enzymes which is dependent on the maintenance of specific ion equilibrium. The aim of the present study was to investigate the effect of acute NaNO2 intoxication on the content of the essential metals iron (Fe), calcium (Ca) and zinc (Zn) in mouse spleen.MethodsMature male ICR mice were divided into four groups and subjected to acute NaNO2 exposure by a single intraperitoneal injection of 120 mg/kg body weight. Animals in each group were sacrificed at certain time interval after treatment (1 h, 5 h, 1 day and 2 days). Spleens were excised and processed for atomic absorption spectrometry analysis of Fe, Ca and Zn content.ResultsAt the first hour after treatment, a decrease in Fe and Ca levels was observed. One day following NaNO2 administration, Zn concentration reached its lowest value and Ca levels remained lower, compared to the untreated controls. In contrast, Fe concentration increased on the first and second day after treatment.ConclusionThe results of the present study demonstrate that acute NaNO2 intoxication provokes changes in the endogenous levels of Fe, Ca and Zn in mouse spleen. These findings suggest disruption of the ionic balance and impact on the activity of antioxidant defence enzymes.  相似文献   
69.
Voltage-gated sodium (NaV) channels initiate and propagate action potentials in excitable tissues to mediate key physiological processes including heart contraction and nervous system function. Accordingly, NaV channels are major targets for drugs, toxins and disease-causing mutations. Recent breakthroughs in cryo-electron microscopy have led to the visualization of human NaV1.1, NaV1.2, NaV1.4, NaV1.5 and NaV1.7 channel subtypes at high-resolution. These landmark studies have greatly advanced our structural understanding of channel architecture, ion selectivity, voltage-sensing, electromechanical coupling, fast inactivation, and the molecular basis underlying NaV channelopathies. NaV channel structures have also been increasingly determined in complex with toxin and small molecule modulators that target either the pore module or voltage sensor domains. These structural studies have provided new insights into the mechanisms of pharmacological action and opportunities for subtype-selective NaV channel drug design. This review will highlight the structural pharmacology of human NaV channels as well as the potential use of engineered and chimeric channels in future drug discovery efforts.  相似文献   
70.
Patients with chronic gastro-oesophageal reflux disease experience the reflux of acid and bile into the distal oesophagus. The secondary bile salt sodium deoxycholate (NDC) is implicated in the induction of mucosal injury during reflux episodes. This study hypothesized that NDC damages DNA in oesophageal cells by an oxidative mechanism. In the oesophageal cell line HET1-A, increased production of nitric oxide (NO) was measured in NDC-treated cells. Protection from DNA strand breaks induced by NDC (10 µm) was observed in cells coincubated with the nitric oxide scavenger C-PTIO (p<0.012) or pre-incubated with the NO synthase inhibitor L-NAME (p<0.009) or the NFκB inhibitor, TPCK (p<0.036). Collectively these data implicate the involvement of NFκB and nitric oxide synthase in the DNA damage induced by NDC in oesophageal cells. In conclusion, NDC-driven NO production may play an important role in inducing DNA damage during episodes of gastro-oesophageal reflux and thereby contribute to reflux-related carcinogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号