首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2418篇
  免费   111篇
  国内免费   61篇
  2590篇
  2023年   32篇
  2022年   28篇
  2021年   35篇
  2020年   47篇
  2019年   46篇
  2018年   43篇
  2017年   53篇
  2016年   34篇
  2015年   50篇
  2014年   96篇
  2013年   130篇
  2012年   99篇
  2011年   165篇
  2010年   95篇
  2009年   91篇
  2008年   109篇
  2007年   108篇
  2006年   103篇
  2005年   73篇
  2004年   72篇
  2003年   75篇
  2002年   76篇
  2001年   43篇
  2000年   45篇
  1999年   44篇
  1998年   37篇
  1997年   42篇
  1996年   38篇
  1995年   39篇
  1994年   41篇
  1993年   40篇
  1992年   46篇
  1991年   35篇
  1990年   33篇
  1989年   42篇
  1988年   29篇
  1987年   30篇
  1986年   40篇
  1985年   41篇
  1984年   55篇
  1983年   41篇
  1982年   38篇
  1981年   38篇
  1980年   23篇
  1979年   18篇
  1978年   10篇
  1977年   14篇
  1976年   7篇
  1975年   6篇
  1973年   6篇
排序方式: 共有2590条查询结果,搜索用时 0 毫秒
921.
Proton-translocating nicotinamide nucleotide transhydrogenases contain an NAD(H)-binding domain (dI), an NADP(H)-binding domain (dIII) and a membrane domain (dII) with the proton channel. Separately expressed and isolated dIII contains tightly bound NADP(H), predominantly in the oxidized form, possibly representing a so-called “occluded” intermediary state of the reaction cycle of the intact enzyme. Despite a Kd in the micromolar to nanomolar range, this NADP(H) exchanges significantly with the bulk medium. Dissociated NADP+ is thus accessible to added enzymes, such as NADP-isocitrate dehydrogenase, and can be reduced to NADPH. In the present investigation, dissociated NADP(H) was digested with alkaline phosphatase, removing the 2′-phosphate and generating NAD(H). Surprisingly, in the presence of dI, the resulting NADP(H)-free dIII catalyzed a rapid reduction of 3-acetylpyridine-NAD+ by NADH, indicating that 3-acetylpyridine-NAD+ and/or NADH interacts unspecifically with the NADP(H)-binding site. The corresponding reaction in the intact enzyme is not associated with proton pumping. It is concluded that there is a 2′-phosphate-binding region in dIII that controls tight binding of NADP(H) to dIII, which is not a required for fast hydride transfer. It is likely that this region is the Lys424-Arg425-Ser426 sequence and loops D and E. Further, in the intact enzyme, it is proposed that the same region/loops may be involved in the regulation of NADP(H) binding by an electrochemical proton gradent.  相似文献   
922.
The Na,K-ATPase carries out the coupled functions of ATP hydrolysis and cation transport. These functions are performed by two distinct regions of the protein. ATP binding and hydrolysis is mediated by the large central cytoplasmic loop of about 430 amino-acids. Transmembrane cation transport is accomplished via coordination of the Na and K ions by side-chains of the amino-acids of several of the transmembrane segments. The way in which these two protein domains interact lies at the heart of the molecular mechanism of active transport, or ion pumping. We summarize evidence obtained from protein chemistry studies of the purified renal Na,K-ATPase and from bacterially expressed polypeptides which characterize these separate functions and point to various movements which may occur as the protein transits through its reaction cycle. We then describe recent work using heterologous expression of renal Na,K-ATPase in baculovirus-infected insect cells which provides a suitable system to characterize such protein motions and which can be employed to test specific models arising from recently acquired high resolution structural information on related ion pumps.  相似文献   
923.
Electrical measurements on planar lipid bilayers, patch/voltage clamp experiments, and spectroscopic investigations involving a potential sensitive dye are reviewed. These experiments were performed to analyze the kinetics of charge translocation of the Na+,K+-ATPase. High time resolution was achieved by applying caged ATP, voltage-jump, and stopped-flow techniques, respectively. Kinetic parameters and the electrogenicity of the relevant transitions in the Na+,K+-ATPase reaction cycle are discussed.  相似文献   
924.
This review article is concerned with two on-going research projects in our laboratory, both of which are related to the study of the NADH dehydrogenase enzyme complexes in the respiratory chain. The goal of the first project is to decipher the structure and mechanism of action of the proton-translocating NADH-quinone oxidoreductase (NDH-1) from two bacteria, Paracoccus denitrificans and Thermus thermophilus HB-8. These microorganisms are of particular interest because of the close resemblance of the former (P. denitrificans) to a mammalian mitochondria, and because of the thermostability of the enzymes of the latter (T. thermophilus). The NDH-1 enzyme complex of these and other bacteria is composed of 13 to 14 unlike subunits and has a relatively simple structure relative to the mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I), which is composed of at least 42 different subunits. Therefore, the bacterial NDH-1 is believed to be a useful model for studying the mitochondrial complex I, which is understood to have the most intricate structure of all the membrane-associated enzyme complexes. Recently, the study of the NADH dehydrogenase complex has taken on new urgency as a result of reports that complex I defects are involved in many human mitochondrial diseases. Thus the goal of the second project is to develop possible gene therapies for mitochondrial diseases caused by complex I defects. This project involves attempting to repair complex I defects in the mammalian system using Saccharomyces cerevisiae NDI1 genes, which code for the internal, rotenone-insensitive NADH–quinone oxidoreductase. In this review, we will discuss our progress and the data generated by these two projects to date. In addition, background information and the significance of various approaches employed to pursue these research objectives will be described.  相似文献   
925.
Gallbladder Na+ absorption is linked to gallstone formation in prairie dogs. Na+/H+ exchange (NHE) is one of the major Na+ absorptive pathways in gallbladder. In this study, we measured gallbladder Na+/H+ exchange and characterized the NHE isoforms expressed in prairie dogs. Na+/H+ exchange activity was assessed by measuring amiloride-inhibitable transepithelial Na+ flux and apical 22Na+ uptake using dimethylamiloride (DMA). HOE-694 was used to determine NHE2 and NHE3 contributions. Basal J Na ms was higher than J Na sm with J Na net absorption. Mucosal DMA inhibited transepithelial Na+ flux in a dose-dependent fashion, causing J Na ms equal to J Na sm and blocking J Na net absorption at 100 μm. Basal 22Na+ uptake rate was 10.9 ± 1.0 μmol · cm−2· hr−1 which was inhibited by ∼43% by mucosal DMA and ∼30% by mucosal HOE-694 at 100 μm. RT-PCR and Northern blot analysis demonstrated expression of mRNAs encoding NHE1, NHE2 and NHE3 in the gallbladder. Expression of NHE1, NHE2 and NHE3 polypeptides was confirmed using isoform-specific anti-NHE antibodies. These data suggest that Na+/H+ exchange accounts for a substantial fraction of gallbladder apical Na+ entry and most of net Na+ absorption in prairie dogs. The NHE2 and NHE3 isoforms, but not NHE1, are involved in gallbladder apical Na+ uptake and transepithelial Na+ absorption. Received: 9 February 2001/Revised: 11 April 2001  相似文献   
926.
Calpain proteolysis of the plasma membrane Ca2+ pump removes a C-terminal 14-kDa portion which includes the calmodulin-binding domain. This produces a fully activated 124-kDa fragment, which can be inhibited by synthetic versions of the calmodulin-binding domain. The inhibition is strongest when Trp-8 in the latter domain is replaced by a Tyr residue (Falchetto, R., Vorherr, T., Brunner, J., & Carafoli, E., 1991, J. Biol. Chem. 266, 2930-2936). In the present study, the N-terminus of the 28-residue synthetic calmodulin-binding domain was acetylated with 3H-acetic anhydride, and Phe in position 25 was replaced by a phenylalanine derivatized with a diazirine-based, photoactivatable carbene precursor. This peptide (C28WC*) inhibited the fully active 124-kDa fragment of the pump and became cross-linked to it upon photolysis. After proteolysis of the fragment with Asp-N or Staphylococcus aureus V8 (Glu-C) protease, labeled peptides were isolated by reversed-phase high-performance liquid chromatography and subjected to Edman sequence analysis. The peptides originated from a region of the pump located within the unit protruding into the cytoplasm between transmembrane domain two and three. This unit has been proposed to be the site of the energy transduction domain, which would couple the ATP hydrolysis to Ca2+ translocation.  相似文献   
927.
Abstract: Brain edema in hepatic encephalopathy has been associated with circulating ammonia that is metabolized to glutamine. We measured alterations in blood chemistry and brain regional specific gravity and ion and amino acid contents in models of simple hyperammonemia and liver failure induced by daily administrations of ammonium acetate (AAc) or thioacetamide (TAA), respectively. Serum and brain ammonia increased to similar levels (200 and 170% of control, respectively) in both experimental groups. Serum transaminase activities increased 10-fold in animals injected with TAA but were unchanged in animals given AAc injections. In both experimental groups glutamine was elevated in cerebral white matter, cerebral gray matter, and basal ganglia, whereas brain tissue specific gravity decreased in all brain regions, indicating edema formation. In the AAc group, we observed a decrease in glutamate and taurine contents concomitant with the development of brain edema. In these animals, cerebral gray matter specific gravity and taurine contents returned to control levels 24 h after the third AAc injection. TAA-injected animals demonstrated similar decreases in brain tissue specific gravity, whereas glutamine, glutamate, and taurine contents were all elevated. During hepatic encephalopathy, ammonia-induced changes in brain amino acid content may contribute to brain edema development.  相似文献   
928.
Soil organic matter (OM) can be stabilized against decomposition by association with minerals, by its inherent recalcitrance and by occlusion in aggregates. However, the relative contribution of these factors to OM stabilization is yet unknown. We analyzed pool size and isotopic composition (14C, 13C) of mineral-protected and recalcitrant OM in 12 subsurface horizons from 10 acidic forest soils. The results were related to properties of the mineral phase and to OM composition as revealed by CPMAS 13C-NMR and CuO oxidation. Stable OM was defined as that material which survived treatment of soils with 6 wt% sodium hypochlorite (NaOCl). Mineral-protected OM was extracted by subsequent dissolution of minerals by 10% hydrofluoric acid (HF). Organic matter resistant against NaOCl and insoluble in HF was considered as recalcitrant OM. Hypochlorite removed primarily 14C-modern OM. Of the stable organic carbon (OC), amounting to 2.4–20.6 g kg−1 soil, mineral dissolution released on average 73%. Poorly crystalline Fe and Al phases (Feo, Alo) and crystalline Fe oxides (Fed−o) explained 86% of the variability of mineral-protected OC. Atomic Cp/(Fe+Al)p ratios of 1.3–6.5 suggest that a portion of stable OM was associated with polymeric Fe and Al species. Recalcitrant OC (0.4–6.5 g kg−1 soil) contributed on average 27% to stable OC and the amount was not correlated with any mineralogical property. Recalcitrant OC had lower Δ14C and δ13C values than mineral-protected OC and was mainly composed of aliphatic (56%) and O-alkyl (13%) C moieties. Lignin phenols were only present in small amounts in either mineral-protected or recalcitrant OM (mean 4.3 and 0.2 g kg−1 OC). The results confirm that stabilization of OM by interaction with poorly crystalline minerals and polymeric metal species is the most important mechanism for preservation of OM in these acid subsoil horizons.  相似文献   
929.
Abstract: The acute effects of serum on sodium-potassium (Na+-K+) pump activity and glucose uptake in cultured rat skeletal muscle were studied. Addition of serum to myo-tubes in phosphate-buffered saline caused Na+-K+ pump activity (as measured by changes in the ouabain-sensitive component of both membrane potential and 86Rb uptake) to increase, with peak effects obtained after 30 min. The effect was blocked completely by treatment with amiloride, but not by tetrodotoxin, which blocks voltage-dependent Na+ channels. On transfer of myotubes to Na+-free, choline buffer, resting Na+-K+ pump activity decreased to about 10% of that in phosphate-buffered saline. Addition of regular serum, but not Na+-free serum, caused Na+-K+ pump activity to increase slightly. Similar results were obtained with serum on glucose uptake, the peak effect being reached within 15 min. Stimulation of glucose uptake by serum was partially reduced by amiloride and was not altered by tetrodotoxin. Removal of external Na+ also eliminated serum effects on glucose uptake. The results demonstrate that there are similar signals involving Na+-H+ exchange for serum-induced increases in Na+-K+ pump activity and glucose transport. The lack of complete blockade of serum-induced elevation of glucose transport suggests an additional, as yet undefined, intracellular signal for stimulation of this transport system.  相似文献   
930.
Here we describe an experimental design aimed to investigate changes in total cellular levels of Na+ and K+ ions in cultures of freshwater filamentous cyanobacteria. Ion concentrations were measured in whole cells by flame photometry. Cellular Na+ levels increased exponentially with rising alkalinity, with K+ levels being maximal for optimal growth pH (∼8). At standardized pH conditions, the increase in cellular Na+, as induced by NaCl at 10 mM, was coupled by the two sodium channel-modulating agents lidocaine hydrochloride at 1 μM and veratridine at 100 μM. Both the channel-blockers amiloride (1 mM) and saxitoxin (1 μM), decreased cell-bound Na+ and K+ levels. Results presented demonstrate the robustness of well-defined channel blockers and channel-activators in the study of cyanobacterial Na+- K+ fluxes. Published: June 29, 2004.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号