首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2416篇
  免费   112篇
  国内免费   60篇
  2023年   31篇
  2022年   27篇
  2021年   35篇
  2020年   47篇
  2019年   46篇
  2018年   43篇
  2017年   53篇
  2016年   34篇
  2015年   50篇
  2014年   96篇
  2013年   130篇
  2012年   99篇
  2011年   165篇
  2010年   95篇
  2009年   91篇
  2008年   109篇
  2007年   108篇
  2006年   103篇
  2005年   73篇
  2004年   72篇
  2003年   75篇
  2002年   76篇
  2001年   43篇
  2000年   45篇
  1999年   44篇
  1998年   37篇
  1997年   42篇
  1996年   38篇
  1995年   39篇
  1994年   41篇
  1993年   40篇
  1992年   46篇
  1991年   35篇
  1990年   33篇
  1989年   42篇
  1988年   29篇
  1987年   30篇
  1986年   40篇
  1985年   41篇
  1984年   55篇
  1983年   41篇
  1982年   38篇
  1981年   38篇
  1980年   23篇
  1979年   18篇
  1978年   10篇
  1977年   14篇
  1976年   7篇
  1975年   6篇
  1973年   6篇
排序方式: 共有2588条查询结果,搜索用时 828 毫秒
851.
Protein trans-splicing using split inteins is well established as a useful tool for protein engineering. Here we show, for the first time, that this method can be applied to a membrane protein under native conditions. We provide compelling evidence that the heptahelical proteorhodopsin can be assembled from two separate fragments consisting of helical bundles A and B and C, D, E, F, and G via a splicing site located in the BC loop. The procedure presented here is on the basis of dual expression and ligation in vivo. Global fold, stability, and photodynamics were analyzed in detergent by CD, stationary, as well as time-resolved optical spectroscopy. The fold within lipid bilayers has been probed by high field and dynamic nuclear polarization-enhanced solid-state NMR utilizing a 13C-labeled retinal cofactor and extensively 13C-15N-labeled protein. Our data show unambiguously that the ligation product is identical to its non-ligated counterpart. Furthermore, our data highlight the effects of BC loop modifications onto the photocycle kinetics of proteorhodopsin. Our data demonstrate that a correctly folded and functionally intact protein can be produced in this artificial way. Our findings are of high relevance for a general understanding of the assembly of membrane proteins for elucidating intramolecular interactions, and they offer the possibility of developing novel labeling schemes for spectroscopic applications.  相似文献   
852.
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR−/−) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR−/− mice fed MCD diet (FXR−/−/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR−/−/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR−/−/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR−/−/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.  相似文献   
853.
Inherited erythromelalgia (IEM) causes debilitating episodic neuropathic pain characterized by burning in the extremities. Inherited “paroxysmal extreme pain disorder” (PEPD) differs in its clinical picture and affects proximal body areas like the rectal, ocular, or jaw regions. Both pain syndromes have been linked to mutations in the voltage-gated sodium channel Nav1.7. Electrophysiological characterization shows that IEM-causing mutations generally enhance activation, whereas mutations leading to PEPD alter fast inactivation. Previously, an A1632E mutation of a patient with overlapping symptoms of IEM and PEPD was reported (Estacion, M., Dib-Hajj, S. D., Benke, P. J., Te Morsche, R. H., Eastman, E. M., Macala, L. J., Drenth, J. P., and Waxman, S. G. (2008) NaV1.7 Gain-of-function mutations as a continuum. A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J. Neurosci. 28, 11079–11088), displaying a shift of both activation and fast inactivation. Here, we characterize a new mutation of Nav1.7, A1632T, found in a patient suffering from IEM. Although transfection of A1632T in sensory neurons resulted in hyperexcitability and spontaneous firing of dorsal root ganglia (DRG) neurons, whole-cell patch clamp of transfected HEK cells revealed that Nav1.7 activation was unaltered by the A1632T mutation but that steady-state fast inactivation was shifted to more depolarized potentials. This is a characteristic normally attributed to PEPD-causing mutations. In contrast to the IEM/PEPD crossover mutation A1632E, A1632T failed to slow current decay (i.e. open-state inactivation) and did not increase resurgent currents, which have been suggested to contribute to high-frequency firing in physiological and pathological conditions. Reduced fast inactivation without increased resurgent currents induces symptoms of IEM, not PEPD, in the new Nav1.7 mutation, A1632T. Therefore, persistent and resurgent currents are likely to determine whether a mutation in Nav1.7 leads to IEM or PEPD.  相似文献   
854.
The Ste20-related kinase SPAK regulates sodium, potassium, and chloride transport in a variety of tissues. Recently, SPAK fragments, which lack the catalytic domain and are inhibitory to Na+ transporters, have been detected in kidney. It has been hypothesized that the fragments originate from alternative translation start sites, but their precise origin is unknown. Here, we demonstrate that kidney lysate possesses proteolytic cleavage activity toward SPAK. Ion exchange and size exclusion chromatography combined with mass spectrometry identified the protease as aspartyl aminopeptidase. The presence of the protease was verified in the active fractions, and recombinant aspartyl aminopeptidase recapitulated the cleavage pattern observed with kidney lysate. Identification of the sites of cleavage by mass spectrometry allowed us to test the function of the smaller fragments and demonstrate their inhibitory action toward the Na+-K+-2Cl cotransporter, NKCC2.  相似文献   
855.
Multidrug resistance (MDR) refers to the capability of bacterial pathogens to withstand lethal doses of structurally diverse drugs which are capable of eradicating non-resistant strains. MDR has been identified as a major threat to the public health of human being by the World Health Organization (WHO). Among the four general mechanisms that cause antibiotic resistance including target alteration, drug inactivation, decreased permeability and increased efflux, drug extrusion by the multidrug efflux pumps serves as an important mechanism of MDR. Efflux pumps not only can expel a broad range of antibiotics owing to their poly-substrate specificity, but also drive the acquisition of additional resistance mechanisms by lowering intracellular antibiotic concentration and promoting mutation accumulation. Over-expression of multidrug efflux pumps have been increasingly found to be associated with clinically relevant drug resistance. On the other hand, accumulating evidence has suggested that efflux pumps also have physiological functions in bacteria and their expression is subject tight regulation in response to various of environmental and physiological signals. A comprehensive understanding of the mechanisms of drug extrusion, and regulation and physiological functions of efflux pumps is essential for the development of anti-resistance interventions. In this review, we summarize the development of these research areas in the recent decades and present the pharmacological exploitation of efflux pump inhibitors as a promising anti-drug resistance intervention.  相似文献   
856.
《FEBS letters》2014,588(8):1244-1248
Cardiac conduction is the process by which electrical excitation is communicated from cell to cell within the heart, triggering synchronous contraction of the myocardium. The role of conduction defects in precipitating life-threatening arrhythmias in various disease states has spurred scientific interest in the phenomenon. While the understanding of conduction has evolved greatly over the last century, the process has largely been thought to occur via movement of charge between cells via gap junctions. However, it has long been hypothesized that electrical coupling between cardiac myocytes could also occur ephaptically, without direct transfer of ions between cells. This review will focus on recent insights into cardiac myocyte intercalated disk ultrastructure and their implications for conduction research, particularly the ephaptic coupling hypothesis.  相似文献   
857.
The first extracellular loop (ECL1) of claudins forms paracellular pores in the tight junction that determine ion permselectivity. We aimed to map the pore-lining residues of claudin-2 by comprehensive cysteine-scanning mutagenesis of ECL1. We screened 45 cysteine mutations within the ECL1 by expression in polyclonal Madin-Darby canine kidney II Tet-Off cells and found nine mutants that displayed a significant decrease of conductance after treatment with the thiol-reactive reagent 2-(trimethylammonium)ethyl methanethiosulfonate, indicating the location of candidate pore-lining residues. Next, we stably expressed these candidates in monoclonal Madin-Darby canine kidney I Tet-Off cells and exposed them to thiol-reactive reagents. The maximum degree of inhibition of conductance, size selectivity of degree of inhibition, and size dependence of the kinetics of reaction were used to deduce the location of residues within the pore. Our data support the following sequence of pore-lining residues located from the narrowest to the widest part of the pore: Ser68, Ser47, Thr62/Ile66, Thr56, Thr32/Gly45, and Met52. The paracellular pore appears to primarily be lined by polar side chains, as expected for a predominantly aqueous environment. Furthermore, our results strongly suggest the existence of a continuous sequence of residues in the ECL1 centered around Asp65–Ser68 that form a major part of the lining of the pore.  相似文献   
858.
Sodium dodecyl sulfate (SDS) is one of the most commonly used detergent, which exhibits excellent biocidal activity against various bacteria and fungi. It is commonly employed in many detergent formulations and is employed for disinfection purposes. It is shown to be toxic to fishes, aquatic animals and is also inhibitory to microbes and cyanobacteria. We had isolated a strain belonging to Pseudomonas aeruginosa N1, from a detergent contaminated pond situated in Varanasi city India, which was able to degrade and metabolize SDS as a source of carbon. In the present investigation, we have studied chemotactic response of this strain towards SDS. The results clearly indicate that this strain showed chemotactic response towards SDS. The nature of chemotaxis was found to be metabolism dependent as glucose grown cells showed a delayed chemotactic response towards SDS. This is first study that reported chemotaxis response for P. aeruginosa towards anionic detergent SDS.  相似文献   
859.

Background

Serum albumin binds avidly to heme to form heme–serum albumin complex, also called methemalbumin, and this binding is thought to protect against the potentially toxic effects of heme. However, the mechanism of detoxification has not been fully elucidated.

Methods

SDS-PAGE and Western blot were used to determine the efficiency of methemalbumin on catalyzing protein carbonylation and nitration. HPLC was used to test the formation of heme to protein cross-linked methemalbumin.

Results

The peroxidase activity of heme increased upon human serum albumin (HSA) binding. Methemalbumin showed higher efficiency in catalyzing tyrosine oxidation than free heme in the presence of H2O2. Methemalbumin catalyzed self-nitration and significantly promoted the nitration of tyrosine in coexistent protein, but decreased the carbonylation of coexistent protein compared with heme. The heme to protein cross-linked form of methemalbumin suggested that HSA trapped the free radical accompanied by the formation of ferryl heme. When tyrosine residues in HSA were modified by iodination, HSA lost of protection effect on protein carbonylation. The low concentration of glutathione could effectively inhibit tyrosine nitration, but had no effect on protein carbonylation.

Conclusion

HSA protects against the toxic effect of heme by transferring the free radical to tyrosine residues in HSA, therefore protecting surrounding proteins from irreversible oxidation, rather than by direct inhibiting the peroxidase activity. The increased tyrosine radicals can be reduced by endogenic antioxidants such as GSH.

General significance

This investigation indicated the important role of tyrosine residues in heme detoxification by HSA and suggested a possible novel mechanism.  相似文献   
860.
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is increasingly considered as an important functional food material because of its rich nutraceutical compounds. Reserve starch is the major component of tartary buckwheat seed. However, the gene sequences and the molecular mechanism of tartary buckwheat starch synthesis are unknown so far. In this study, the complete genomic sequence and full-size cDNA coding tartary buckwheat granule-bound starch synthase I (FtGBSSI), which is responsible for amylose synthesis, were isolated and analyzed. The genomic sequence of the FtGBSSI contained 3947 nucleotides and was composed of 14 exons and 13 introns. The cDNA coding sequence of FtGBSSI shared 63.3%–75.1% identities with those of dicots and 56.6%–57.5% identities with monocots (Poaceae). In deduced amino acid sequence of FtGBSSI, eight motifs conserved among plant starch synthases were identified. A cleavage at the site IVC↓G of FtGBSSI protein produces the chloroplast transit sequence of 78 amino acids and the mature protein of 527 amino acids. The FtGBSSI mature protein showed an identity of 73.4%–77.8% with dicot plants, and 67.6%–70.4% with monocot plants (Poaceae). The mature protein was composed of 20 α-helixes and 16 β-strands, and folds into two main domains, N- and C-terminal domains. The critical residues which are involved in ADP and sugar binding were predicted. These results will be useful to modulate starch composition of buckwheat kernels with the aim to produce novel improved varieties in future breeding programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号