首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2416篇
  免费   112篇
  国内免费   60篇
  2023年   31篇
  2022年   27篇
  2021年   35篇
  2020年   47篇
  2019年   46篇
  2018年   43篇
  2017年   53篇
  2016年   34篇
  2015年   50篇
  2014年   96篇
  2013年   130篇
  2012年   99篇
  2011年   165篇
  2010年   95篇
  2009年   91篇
  2008年   109篇
  2007年   108篇
  2006年   103篇
  2005年   73篇
  2004年   72篇
  2003年   75篇
  2002年   76篇
  2001年   43篇
  2000年   45篇
  1999年   44篇
  1998年   37篇
  1997年   42篇
  1996年   38篇
  1995年   39篇
  1994年   41篇
  1993年   40篇
  1992年   46篇
  1991年   35篇
  1990年   33篇
  1989年   42篇
  1988年   29篇
  1987年   30篇
  1986年   40篇
  1985年   41篇
  1984年   55篇
  1983年   41篇
  1982年   38篇
  1981年   38篇
  1980年   23篇
  1979年   18篇
  1978年   10篇
  1977年   14篇
  1976年   7篇
  1975年   6篇
  1973年   6篇
排序方式: 共有2588条查询结果,搜索用时 491 毫秒
151.
Piezoelectric Pump Used in Bionic Underwater Propulsion Unit   总被引:1,自引:0,他引:1  
A new piezoelectric pump can pump liquid either forward or backward and adjust the flow rate. Thus an object can be driven forward or backward at different speeds. The driver of the pump, a circular piezoelectric plate, is modelled by Finite Element Method (FEM) in ANSYS and its performance is simulated and analyzed. The pump gives the best performance when the driving signals of the inlet and outlet valves have a bigger duty cycle and the plate has a higher voltage applied.  相似文献   
152.
Summary. High fructose feeding induces moderate increases in blood pressure of normal rats, associated with hyperinsulinemia, insulin resistance and impaired glucose tolerance. Increased vascular resistance, and sodium retention have been proposed to contribute to the blood pressure elevation in this model. Taurine, a sulphur-containing amino acid has been reported to have antihypertensive and antinatriuretic actions. In addition, taurine is shown to increase the excretion of nitrite and kinin availability and hence would be expected to improve the vascular tone. In the present study, the involvement of kinins in the blood pressure lowering effect of taurine was investigated by coadministration of Hoe 140, a kinin B2 receptor antagonist along with taurine. The effects of taurine on plasma and urinary concentrations of sodium and tissue kallikrein activity were studied in high fructose-fed rats. Fructose-fed rats had elevated blood pressure and decreased levels of sodium in urine. Treatment with 2% taurine in drinking water prevented the blood pressure elevation and coadministration of Hoe 140 abolished this effect of taurine in high fructose-fed rats. The findings confirm the antinatriuretic action of taurine and also suggest a role for the kinins in the mechanism of taurine action in diet-induced hypertension.  相似文献   
153.
Voltage-gated ionic channels are known to be involved in oncogenesis. However, only a few studies describe the functional characteristics of these channels or the mechanisms by which they are involved in the proliferation and invasive processes. Breast cancer cells proliferate and migrate under the constant activation of growth factors, hormones, extracellular matrix interactions, etc. It would thus not be surprising if the activity of the ionic channels was modulated by intracellular regulation pathways such as kinases or phosphatases, which in turn can affect oncogenic properties. In the present study, we investigated some of the electrophysiological properties of the fast inward sodium current found in the breast cancer cell line MDA-MB-231 with two configurations of the patch-clamp technique. With perforated patch, a configuration which allows to keep the cytoplam intact, the mean current amplitude was lower, the relative conductance–voltage relationship was shifted to more positive potentials and the recovery from inactivation was accelerated when compared to ruptured patch, where the cytoplasm is dialysed by the intrapipette solution. There was no difference in availability–voltage (pseudo-steady-state inactivation) relationship and in time to peak of the current. These results suggest that regulation mechanisms, possibly involving kinases or phosphatases, are switched off when the cytoplasm is diluted. We propose that such a regulation can modulate the functioning of the channels even in the absence of membrane voltage changes, which in turn can affect oncogenic properties. This finding is of importance when evaluating the physiopathological role of ionic channel in cancer development.Abbreviations DMEM Dulbeccos modified Eagles medium - FBS fetal bovine serum - PP perforated patch - RP ruptured patch Presented at the Biophysical Society Meeting on Ion Channels—from structure to disease held in May 2003, Rennes, France  相似文献   
154.
Shrinkage is the earliest hallmark of cells undergoing apoptosis. This study examines the role of this phenomenon in the onset of vascular smooth muscle cell (VSMC) apoptosis triggered by growth factor withdrawal. In hyperosmotic media, VSMC showed the same amplitude of shrinkage but were more resistant to apoptosis than endothelial, epithelial and immune system cells. As with growth factor withdrawal, apoptosis in hyperosmotically-shrunken VSMC was sharply potentiated by transfection with E1A-adenoviral protein and was suppressed by activation of cAMP signaling as well as by the pan-caspase inhibitor z-VAD.fmk. Both cell shrinkage and apoptosis in VSMC-E1A treated with hyperosmotic medium were potentiated under sustained Na+, K+ pump inhibition with ouabain that was in contrast to inhibition of apoptosis documented in ouabain-treated, serum-deprived cells. After 1-hr incubation in serum-deprived medium, VSMC-E1A volume declined by approximately 15%. Transfer from hypotonic to control medium decreased VSMC-E1A volume by approximately 25% without any induction of apoptosis. Neither swelling in hyposmotic medium nor dissipation of the transmembrane gradient of K+ and major organic osmolytes protected serum-deprived VSMC-E1A from apoptosis. Thus, our results show that similarly to immune system, endothelial and epithelial cells, extensive VSMC shrinkage in hyperosmotic medium leads to the development of apoptosis. In contrast to hyperosmotic medium, the modest cell volume decrease occurring in serum-deprived VSMC does not contribute to triggering of the apoptotic machinery.  相似文献   
155.
Voltage-dependent sodium channels (VDSC) are an important class of ion channels in excitable cells, where they are responsible for the generation and conduction of action potential. In addition, the release of neurotransmitters from nerve terminals is influenced by sodium channel activity. The function of VDSC is subject to modulation by various neurotoxins, such as scorpion toxins, which have long been used as tools in the investigation of neurotransmitter release. This opens an interesting perspective concerning modulation of neurotransmission via pharmacological manipulation of sodium channel properties, which can lead to a better understanding of their physiological and pathological roles. Here we briefly review the studies of neurotoxins acting on sodium channels, focusing primarily on the view of the mechanisms of neurotransmitter release.  相似文献   
156.
Mg(2+) buffering mechanisms in PC12 cells were demonstrated with particular focus on the role of the Na(+)/Mg(2+) transporter by using a newly developed Mg(2+) indicator, KMG-20, and also a Na(+) indicator, Sodium Green. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), a protonophore, induced a transient increase in the intracellular Mg(2+) concentration ([Mg(2+)](i)). The rate of decrease of [Mg(2+)](i) was slower in a Na(+)-free extracellular medium, suggesting the coupling of Na(+) influx and Mg(2+) efflux. Na(+) influxes were different for normal and imipramine- (a putative inhibitor of the Na(+)/Mg(2+) transporter) containing solutions. FCCP induced a rapid increase in [Na(+)](i) in the normal solution, while the increase was gradual in the imipramine-containing solution. The rate of decrease of [Mg(2+)](i) in the imipramine-containing solution was also slower than that in the normal solution. From these results, we show that the main buffering mechanism for excess Mg(2+) depends on the Na(+)/Mg(2+) transporter in PC12 cells.  相似文献   
157.
Recent research communications indicate that the adult human brain contains undifferentiated, multipotent precursors or neural stem cells. It is not known, however, whether these cells can develop into fully functional neurons. We cultured cells from the adult human ventricular wall as neurospheres and passed them at the individual cell level to secondary neurospheres. Following dissociation and plating, the cells developed the antigen profile of the three main cell types in the brain (GFAP, astrocytes; O2, oligodendrocytes; and beta-III-tubulin/NeuN, neurons). More importantly, the cells developed the electrophysiological profiles of neurons and glia. Over a period of 3 weeks, neuron-like cells went through the same phases as neurons do during development in vivo, including up-regulation of inward Na+ -currents, drop in input resistance, shortening of the action potential, and hyperpolarization of the cell membrane. The cells developed overshooting action potentials with a mature configuration. Recordings in voltage-clamp mode displayed both the fast inactivating TTX-sensitive sodium current (INa) underlying the rising phase of the action potential and the two potassium currents terminating the action potential in mature neurons (IA and IK, sensitive to 4-AP and TEA, respectively). We have thus demonstrated that the human ventricular wall contains multipotent cells that can differentiate into functionally mature neurons.  相似文献   
158.
The modular evolutionary origin of NADH:ubiquinone oxidoreductase (complex I) provides useful insights into its functional organization. Iron-sulfur cluster N2 and the PSST and 49 kDa subunits were identified as key players in ubiquinone reduction and proton pumping. Structural studies indicate that this 'catalytic core' region of complex I is clearly separated from the membrane. Complex I from Escherichia coli and Klebsiella pneumoniae was shown to pump sodium ions rather than protons. These new insights into structure and function of complex I strongly suggest that proton or sodium pumping in complex I is achieved by conformational energy transfer rather than by a directly linked redox pump.  相似文献   
159.
Since selenium and vitamin E have been increasingly recognized as an essential element in biology and medicine, current research activities in the field of human medicine and nutrition are devoted to the possibilities of using these antioxidants for the prevention or treatment of many diseases. The present study was aimed at investigating and comparing the effects of dietary antioxidants on glutathione reductase and glutathione peroxidase activities as well as free and protein-bound sulfhydryl contents of rat liver and brain tissues. For 12–14 wk, both sex of weanling rats were fed a standardized selenium-deficient and vitamin E-deficient diet, a selenium-excess diet, or a control diet. It is observed that glutathione reductase and glutathione peroxidase activities of both tissues of the rats fed with a selenium-deficient or excess diet were significantly lower than the values of the control group. It is also shown that free and bound sulfhydryl concentrations of these tissues of both experimental groups were significantly lower than the control group. The percentage of glutathione reductase and glutathione peroxidase activities of the deficient group with respect to the control were 50% and 47% in liver and 66% and 61% in the brain, respectively; while these values in excess group were 51% and 69% in liver and 55% and 80% in brain, respectively. Free sulfhydryl contents of the tissues in both experimental groups showed a parallel decrease. Furthermore, the decrease in protein-bound sulfhydryl values of brain tissues were more pronounced than the values found for liver. It seems that not only liver but also the brain is an important target organ to the alteration in antioxidant system through either a deficiency of both selenium and vitamin E or an excess of selenium alone in the diet.  相似文献   
160.
Selenium is known to play an important role in the physiology of many different cell types and extracellular application of selenite causes cellular dysfunction in many different types of tissues. In a previous study, we have shown that in rat ventricles, sodium selenite (≥1 mM) caused an increase in the resting tension and a decrease in contractile force, in a time-dependent manner. In the present study, we have shown that sodium selenite caused a contracture state both in Langendorff perfused hearts and isolated papillary muscles. We also showed that the application of extracellular ATP (0.1 mM) markedly reduced this detrimental effect of sodium selenite on ventricular contraction in Langendorff perfused hearts and delayed it in isolated papillary muscle preparations. In contrast, isoproterenol (0.1 μM) did not seem to influence this action of sodium selenite in papillary muscle preparations. Possible reasons for this protective effect of ATP to selenite-induced contracture are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号