首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7988篇
  免费   383篇
  国内免费   183篇
  8554篇
  2023年   93篇
  2022年   135篇
  2021年   166篇
  2020年   166篇
  2019年   206篇
  2018年   194篇
  2017年   161篇
  2016年   130篇
  2015年   204篇
  2014年   297篇
  2013年   486篇
  2012年   280篇
  2011年   374篇
  2010年   224篇
  2009年   265篇
  2008年   284篇
  2007年   342篇
  2006年   342篇
  2005年   333篇
  2004年   322篇
  2003年   286篇
  2002年   312篇
  2001年   233篇
  2000年   218篇
  1999年   167篇
  1998年   186篇
  1997年   206篇
  1996年   180篇
  1995年   160篇
  1994年   159篇
  1993年   155篇
  1992年   140篇
  1991年   129篇
  1990年   123篇
  1989年   140篇
  1988年   100篇
  1987年   83篇
  1986年   72篇
  1985年   97篇
  1984年   78篇
  1983年   44篇
  1982年   61篇
  1981年   56篇
  1980年   41篇
  1979年   30篇
  1978年   19篇
  1977年   22篇
  1976年   14篇
  1975年   9篇
  1973年   10篇
排序方式: 共有8554条查询结果,搜索用时 13 毫秒
991.
Radiolabelled calmodulin has previously been used to screen cDNA expression libraries to isolate calmodulin-binding proteins. We have modified this technique for the isolation of plant calmodulin-binding proteins. [35S]-methionine was used instead of the inorganic [35S]-sulfate, or125I used in previous methods. In addition, theE. coli pET expression system was chosen to obtain high levels of recombinant calmodulin at the time of labelling. The procedure thus takes into account both the specific activity of the probe and the amount of protein necessary for screening a large number of filters. Here we describe in detail a procedure for the production and purification of [35S]-recombinant calmodulin and the use of the radiolabelled protein as a probe to screen plant cDNA expression libraries. The [35S]-labeled calmodulin probe easily detects the λICM-1 phage encoding a partial mouse calmodulin-dependent protein kinase II that was previously isolated using a [125I]-calmodulin probe (Sikela and Hahn, 1987). Subsequently, a tobacco root cDNA expression library was screened and a positive clone encoding a calcium-dependent calmodulin-binding protein was isolated.  相似文献   
992.
A subcellular fraction enriched in plasma membranes was obtained from gypsy moth (Lymantria dispar) larval midgut tissue. Using [45Ca]2+ as a tracer, Ca2+ transport activity by membrane vesicles in the enriched fraction was measured and shown to be ATP-dependent, with a very high affinity for Ca2+ (apparent Km for [Ca2+ free]
  • 1 Abbreviations used: [Ca2+free] = concentration of free (unbound) calcium ion;CaM = calmodulin; F = fraction; IOV = inside-out membrane vesicles; W-5 = N-(6-aminohexyl)-1-naphthalenesulfonamide; W-7 = N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide.
  • = 22 nM). Ca2+ transport was abolished upon addition of the calcium ionophore, A23187. Ca2+-stimulated, Mg2+-dependent ATPase activity peaked between 100 and 200 nM Ca2+free. Ca2+-Mg2+-ATPase activity was inhibited by vanadate, 2 phenothiazine drugs (trifluoperazine and chlorpromazine), and the naphthalene sulfonamide, W-7; the related compound, W-5, and ouabain had a negligible effect. These results suggest the presence of a high affinity plasma membrane Ca2+ pump in gypsy moth larval midgut cells and are discussed in light of earlier work involving calcium transport in isolated midguts of larval Hyalophora cecropia. Ionic and other conditions that characterize the midgut physiology of larval Lepidoptera (e.g., luminal pH; electrochemical gradient for Ca2+; effect of certain ions and inhibitors on Ca2+ transport) contrast significantly with those found in adult Diptera. The implications that these differences may have for calcium regulation are discussed. © 1992 Wiley-Liss, Inc.  相似文献   
    993.
    The Ca(2+)-activated K+ (BK) channel alpha-subunit contains many cysteine residues within its large COOH-terminal tail domain. To probe the function of this domain, we examined effects of cysteine-modifying reagents on channel gating. Application of MTSET, MTSES, or NEM to mSlo1 or hSlo1 channels changed the voltage and Ca2+ dependence of steady-state activation. These reagents appear to modify the same cysteines but have different effects on function. MTSET increases I(K) and shifts the G(K)-V relation to more negative voltages, whereas MTSES and NEM shift the G(K)-V in the opposite direction. Steady-state activation was altered in the presence or absence of Ca2+ and at negative potentials where voltage sensors are not activated. Combinations of [Ca2+] and voltage were also identified where P(o) is not changed by cysteine modification. Interpretation of our results in terms of an allosteric model indicate that cysteine modification alters Ca2+ binding and the relative stability of closed and open conformations as well as the coupling of voltage sensor activation and Ca2+ binding and to channel opening. To identify modification-sensitive residues, we examined effects of MTS reagents on mutant channels lacking one or more cysteines. Surprisingly, the effects of MTSES on both voltage- and Ca(2+)-dependent gating were abolished by replacing a single cysteine (C430) with alanine. C430 lies in the RCK1 (regulator of K+ conductance) domain within a series of eight residues that is unique to BK channels. Deletion of these residues shifted the G(K)-V relation by > -80 mV. Thus we have identified a region that appears to strongly influence RCK domain function, but is absent from RCK domains of known structure. C430A did not eliminate effects of MTSET on apparent Ca2+ affinity. However an additional mutation, C615S, in the Haem binding site reduced the effects of MTSET, consistent with a role for this region in Ca2+ binding.  相似文献   
    994.
    995.
    The involvement of chloride in salt stress symptoms and salt tolerance mechanisms in plants has been less investigated in the past. Therefore, we studied the salt-induced chloride influx in Arabidopsis expressing the GFP-based anion indicator Clomeleon. High salt concentrations induce two phases of chloride influx. The fast kinetic phase is likely caused by membrane depolarization, and is assumed to be mediated by channels. This is followed by a slower "saturation" phase, where chloride is accumulated in the cytoplasm. Both phases of chloride uptake are dependent on the presence of external calcium. In general: with high [Ca2+] less chloride is accumulated in the cytoplasm. Surprisingly, also the internal calcium availability has an impact on chloride transport. A complete block of the second phase of chloride influx is achieved by the anion channel blocker A9C and trivalent cations (La3+, Gd3+, and Al3+). Other channel blockers and diuretics were found to inhibit the process partially. The results suggest that several transporter species are involved here, including electroneutral cation-chloride-cotransporters, and a part of chloride possibly enters the cells through cation channels after salt application.  相似文献   
    996.
    The electrophoretic pattern of soluble proteins from seven rat brain regions (amygdala, cerebellum, corpus striatum, cortex, hypothalamus, medulla, and midbrain) was examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Although the number of protein bands (36) was identical in all brain regions studied, there were differences in their relative densities, the greatest variation occurring in the low-molecular-weight region of the electrophoretogram. The bulk of the soluble proteins had molecular weights between 23,000 and 90,000 daltons. The medulla and amygdala showed the greatest range of protein band concentration. A large number of protein bands in the midbrain and corpus striatum showed a greater concentration of protein compared to the same bands in the other regions. A protein band that migrated with the same characteristic as albumin was found. It was consistently high in all regions, the midbrains showing a 1.5-fold greater concentration compared to other regions. Linear regression analysis of wet weight of regional brain tissue against protein concentration yielded a regression coefficient (r2) of 0.77. Midbrain and corpus striatum showed a relatively higher protein concentration: weight ratio than other regions.  相似文献   
    997.
    The rise of antibiotic resistance has increased the need for alternative ways of preventing and treating enteropathogenic bacterial infection. Various probiotic bacteria have been used in animal and human. However, Saccharomyces boulardii is the only yeast currently used in humans as probiotic. There is scarce research conducted on yeast species commonly found in kefir despite its claimed potential preventative and curative effects. This work focused on adhesion properties, and antibacterial metabolites produced by Kluyveromyces lactis and Saccharomyces unisporus isolated from traditional kefir grains compared to Saccharomyces boulardii strains. Adhesion and sedimentation assay, slide agglutination, microscopy and turbidimetry assay were used to analyze adhesion of Salmonella Arizonae and Salmonella Typhimurium onto yeast cells. Salmonella growth inhibition due to the antimicrobial metabolites produced by yeasts in killer toxin medium was analyzed by slab on the lawn, turbidimetry, tube dilution and solid agar plating assays. Alcohol and antimicrobial proteins production by yeasts in killer toxin medium were analyzed using gas chromatography and shotgun proteomics, respectively. Salmonella adhered onto viable and non-viable yeast isolates cell wall. Adhesion was visualized using scanning electron microscope. Yeasts-fermented killer toxin medium showed Salmonella growth inhibition. The highest alcohol concentration detected was 1.55%, and proteins with known antimicrobial properties including cathelicidin, xanthine dehydrogenase, mucin-1, lactadherin, lactoperoxidase, serum amyloid A protein and lactotransferrin were detected in yeasts fermented killer medium. These proteins are suggested to be responsible for the observed growth inhibition effect of yeasts-fermented killer toxin medium. Kluyveromyces lactis and Saccharomyces unisporus have anti-salmonella effect comparable to Saccharomyces boulardii strains, and therefore have potential to control Salmonella infection.  相似文献   
    998.
    Mammalian cells utilize Akt‐dependent signaling to deploy intracellular Glut4 toward cell surface to facilitate glucose uptake. Low‐density lipoprotein receptor (LDLR) is the cargo receptor mediating endocytosis of apolipoprotein B‐containing lipoproteins. However, signaling‐controlled regulation of intracellular LDLR trafficking remains elusive. Here, we describe a unique amino acid stress response, which directs the deployment of intracellular LDLRs, causing enhanced LDL endocytosis, likely via Ca2+ and calcium/calmodulin‐dependent protein kinase II‐mediated signalings. This response is independent of induction of autophagy. Amino acid stress‐induced increase in LDL uptake in vitro is comparable to that by pravastatin. In vivo, acute AAS challenge for up to 72 h enhanced the rate of hepatic LDL uptake without changing the total expression level of LDLR. Reducing dietary amino acids by 50% for 2 to 4 weeks ameliorated high fat diet‐induced hypercholesterolemia in heterozygous LDLR‐deficient mice, with reductions in both LDL and VLDL fractions. We suggest that identification of signaling‐controlled regulation of intracellular LDLR trafficking has advanced our understanding of the LDLR biology, and may benefit future development of additional therapeutic strategies for treating hypercholesterolemia.  相似文献   
    999.
    Summary Transepithelial electrogenic Na+ transport (INa) was investigated in the coprodeum of 20-days-old chicken embryos in Ussing chambers. Short circuit current (Isc) and transepithelial resistance (Rt) were 14.7±4.8 A · cm-2 (n=12) and 0.53±0.09 k · cm-2 (n=12), respectively. INa was calculated from changes in Isc by substitution of mucosal Na+ by (N-methyl-d-glucamine) (NMDG). Isc inversed during Na+ removal, and INa was found to be 27.8±4.7 A · cm-2 (n=12). Amiloride (100 mol · l-1) inhibited only about 60% of INa. Analysis of Isc fluctuations revealed a Lorentzian component in the power density spectrum with a corner frequency of about 57 Hz. This component was not correlated to INa, and its origin is still unclear. Removal of mucosal Ca2+ increased INa about 2.5-fold due to an increase of the amiloride-insensitive component of INa in additionally investigated adult tissues. The results clearly show that this is due to a non-selective cation channel with an apparent order of selectivity Cs+>Na+=K+>Rb+>Li+. The Ca2+ concentration required to block 50% of the Isc was about 18 mol · l-1. The I sc Ca could also be supressed by other divalent cations such as Mg2+ and Ba2+. Additionally, an INa-linked Lorentzian component occurred which dominated the control spectrum with a significantly higher corner frequency (about 88 Hz). The results indicate that Na+ absorption in the coprodeum of the chicken embryo is more complex than in adult hens. However, the Ca2+ sensitivity of INa is similar to comparable effects described for other epithelia. This possibly reflects the existence of two types of amiloride-insensitive apical cation channels as pathways for Na+ absorption, which may be involved to differing degrees in ontogenetic developments of nonselective channels to Na+-specific ion channels.Abbreviations DPL direct-linear-plot method - slope of the back-ground noise component - EGTA ethylene glycol-bi(2-amino-ethylether)-N,N,N,N-tetraacetic acid - f frequency - f c corner frequency of the Lorentzian noise component - G t transepithelial conductance - HEPES N-hydroxyethylpiperazine-N-ethanesulfonic acid - I sc short-circuit current - I Na transepithelial sodium current - I sc Ca Ca2+-sensitive short-circuit current - K m Ca Michaelis-Menten constant for Ca2+ - K B power density of the background noise component at f=1Hz - m mucosal - NMDG N-methyl-D-glucamine - R t transepithelial resistance - s serosal - SEM standard error of mean - S(f) power density of the Lorentzian noise component - S o plateau value of the Lorentzian noise component  相似文献   
    1000.
    Mesocestoides corti (syn. vogae), as many other cestode platyhelminthes, contains abundant mineralized structures called calcareous corpuscles. These concretions may constitute as much as 40% of the dry weight of the organisms, but their function remains poorly understood. In this work, we reviewed the mineral composition of the calcareous corpuscles of M. corti. X-ray diffraction pattern showed that the major mineral component of the corpuscles is a hydrated form of calcium carbonate, monohydrocalcite, also confirmed by infrared spectrometry. The baseline shift of the X-ray diffraction spectra suggested the presence of amorphous calcium carbonate, accordingly to previous reports, and an organic matrix was confirmed by FTIR. Monohydrocalcite is a rare mineral unusually found in biominerals. Although the significance of monohydrocalcite in biominerals has not been determined, the knowledge of corpuscles composition is of relevance to establish their function and for the elucidation of the mechanisms involved in mineralization processes.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号