首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1850篇
  免费   77篇
  国内免费   50篇
  2023年   23篇
  2022年   35篇
  2021年   50篇
  2020年   52篇
  2019年   50篇
  2018年   69篇
  2017年   49篇
  2016年   63篇
  2015年   77篇
  2014年   166篇
  2013年   123篇
  2012年   91篇
  2011年   120篇
  2010年   85篇
  2009年   87篇
  2008年   102篇
  2007年   70篇
  2006年   85篇
  2005年   77篇
  2004年   78篇
  2003年   46篇
  2002年   39篇
  2001年   26篇
  2000年   20篇
  1999年   24篇
  1998年   25篇
  1997年   12篇
  1996年   14篇
  1995年   13篇
  1994年   14篇
  1993年   17篇
  1992年   8篇
  1991年   22篇
  1990年   18篇
  1989年   18篇
  1988年   10篇
  1987年   16篇
  1985年   9篇
  1984年   8篇
  1983年   10篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1978年   5篇
  1977年   3篇
  1972年   4篇
  1971年   4篇
  1970年   3篇
  1966年   3篇
  1963年   3篇
排序方式: 共有1977条查询结果,搜索用时 593 毫秒
71.
Small heat shock proteins (sHSPs), as ubiquitous molecular chaperones found in all forms of life, are known to be able to protect cells against stresses and suppress the aggregation of a variety of model substrate proteins under in vitro conditions. Nevertheless, it is poorly understood what natural substrate proteins are protected by sHSPs in living cells. Here, by using a genetically incorporated photo-cross-linker (p-benzoyl-l-phenylalanine), we identified a total of 95 and 54 natural substrate proteins of IbpB (an sHSP from Escherichia coli) in living cells with and without heat shock, respectively. Functional profiling of these proteins (110 in total) suggests that IbpB, although binding to a wide range of cellular proteins, has a remarkable substrate preference for translation-related proteins (e.g. ribosomal proteins and amino-acyl tRNA synthetases) and moderate preference for metabolic enzymes. Furthermore, these two classes of proteins were found to be more prone to aggregation and/or inactivation in cells lacking IbpB under stress conditions (e.g. heat shock). Together, our in vivo data offer novel insights into the chaperone function of IbpB, or sHSPs in general, and suggest that the preferential protection on the protein synthesis machine and metabolic enzymes may dominantly contribute to the well known protective effect of sHSPs on cell survival against stresses.  相似文献   
72.
Phospholipase C (PLC) isozymes are important signaling molecules, but few small molecule modulators are available to pharmacologically regulate their function. With the goal of developing a general approach for identification of novel PLC inhibitors, we developed a high-throughput assay based on the fluorogenic substrate reporter WH-15. The assay is highly sensitive and reproducible: screening a chemical library of 6280 compounds identified three novel PLC inhibitors that exhibited potent activities in two separate assay formats with purified PLC isozymes in vitro. Two of the three inhibitors also inhibited G protein-coupled receptor-stimulated PLC activity in intact cell systems. These results demonstrate the power of the high-throughput assay for screening large collections of small molecules to identify novel PLC modulators. Potent and selective modulators of PLCs will ultimately be useful for dissecting the roles of PLCs in cellular processes, as well as provide lead compounds for the development of drugs to treat diseases arising from aberrant phospholipase activity.  相似文献   
73.
MeaB is an accessory GTPase protein involved in the assembly, protection, and reactivation of 5′-deoxyadenosyl cobalamin-dependent methylmalonyl-CoA mutase (MCM). Mutations in the human ortholog of MeaB result in methylmalonic aciduria, an inborn error of metabolism. G-proteins typically utilize conserved switch I and II motifs for signaling to effector proteins via conformational changes elicited by nucleotide binding and hydrolysis. Our recent discovery that MeaB utilizes an unusual switch III region for bidirectional signaling with MCM raised questions about the roles of the switch I and II motifs in MeaB. In this study, we addressed the functions of conserved switch II residues by performing alanine-scanning mutagenesis. Our results demonstrate that the GTPase activity of MeaB is autoinhibited by switch II and that this loop is important for coupling nucleotide-sensitive conformational changes in switch III to elicit the multiple chaperone functions of MeaB. Furthermore, we report the structure of MeaB·GDP crystallized in the presence of AlFx to form the putative transition state analog, GDP·AlF4. The resulting crystal structure and its comparison with related G-proteins support the conclusion that the catalytic site of MeaB is incomplete in the absence of the GTPase-activating protein MCM and therefore unable to stabilize the transition state analog. Favoring an inactive conformation in the absence of the client MCM protein might represent a strategy for suppressing the intrinsic GTPase activity of MeaB in which the switch II loop plays an important role.  相似文献   
74.
Within tailed bacteriophages, interaction of the receptor-binding protein (RBP) with the target cell triggers viral DNA ejection into the host cytoplasm. In the case of phage T5, the RBP pb5 and the receptor FhuA, an outer membrane protein of Escherichia coli, have been identified. Here, we use small angle neutron scattering and electron microscopy to investigate the FhuA-pb5 complex. Specific deuteration of one of the partners allows the complete masking in small angle neutron scattering of the surfactant and unlabeled proteins when the complex is solubilized in the fluorinated surfactant F6-DigluM. Thus, individual structures within a membrane protein complex can be described. The solution structure of FhuA agrees with its crystal structure; that of pb5 shows an elongated shape. Neither displays significant conformational changes upon interaction. The mechanism of signal transduction within phage T5 thus appears different from that of phages binding cell wall saccharides, for which structural information is available.  相似文献   
75.
The intracellular ice formation (IIF) behavior of Haliotis diversicolor (small abalone) eggs is investigated in this study, in relation to controlling the cooling rate and the concentration of dimethyl sulfoxide (DMSO). The IIF phenomena are monitored under a self-developed thermoelectric cooling (TEC) cryomicroscope system which can achieve accurate temperature control without the use of liquid nitrogen. The accuracy of the isothermal and ramp control is within ±0.5 °C. The IIF results indicate that the IIF of small abalone eggs is well suppressed at cooling rates of 1.5, 3, 7 and 12 °C/min with 2.0, 2.5, 3.0 and 4.0 M DMSO in sea water. As 2.0 M DMSO in sea water is the minimum concentration that has sufficient IIF suppression, it is selected as the suspension solution for the cryopreservation of small abalone eggs in order to consider the solution’s toxicity effect. Moreover, IIF characteristics of the cumulative probability of IIF temperature distribution are shown to be well fitted by the Weibull probabilistic distribution. According to our IIF results and the Weibull distribution parameters, we conclude that cooling at 1.5 °C/min from 20 to −50 °C with 2.0 M DMSO in sea water is more feasible than other combinations of cooling rates and DMSO concentrations in our experiments. Applying this protocol and observing the subsequent osmotic activity, 48.8% of small abalone eggs are osmotically active after thawing. In addition, the higher the cooling rate, the less chance of osmotically active eggs. A separate fertility test experiment, with a cryopreservation protocol of 1.5 °C/min cooling rate and 2.0 M DMSO in sea water, achieves a hatching rate of 23.7%. This study is the first to characterize the IIF behavior of small abalone eggs in regard to the cooling rate and the DMSO concentration. The Weibull probabilistic model fitting in this study is an approach that can be applied by other researchers for effective cryopreservation variability estimation and analysis.  相似文献   
76.
Human cells utilize a variety of complex DNA repair mechanisms in order to combat constant mutagenic and cytotoxic threats from both exogenous and endogenous sources. The RecQ family of DNA helicases, which includes Bloom helicase (BLM), plays an important function in DNA repair by unwinding complementary strands of duplex DNA as well as atypical DNA structures such as Holliday junctions. Mutations of the BLM gene can result in Bloom syndrome, an autosomal recessive disorder associated with cancer predisposition. BLM-deficient cells exhibit increased sensitivity to DNA damaging agents indicating that a selective BLM inhibitor could be useful in potentiating the anticancer activity of these agents. In this work, we describe the medicinal chemistry optimization of the hit molecule following a quantitative high-throughput screen of >355,000 compounds. These efforts lead to the identification of ML216 and related analogs, which possess potent BLM inhibition and exhibit selectivity over related helicases. Moreover, these compounds demonstrated cellular activity by inducing sister chromatid exchanges, a hallmark of Bloom syndrome.  相似文献   
77.
二郎山小型兽类区系及分布格局   总被引:1,自引:0,他引:1  
动物种类和数量在不同的山地或同一山地的不同垂直高度有很大的差异,正因如此,国际上和国内的研究者们一直在努力探讨动物在山地的分布规律和产生差异的原因(Merriam et al.,1890;鲍毅新等,1984;Heaney,2001;Rickart,2001;SánchezCordero,2001;张云智等,2002;李义明等,2003;马俊等,2010).横断山是中国最长、最宽和最典型的南北向山系,位于青藏高原东南部,通常为四川、云南两省西部和西藏自治区东部南北向山脉的总称.横断山是全球25个生物多样性热点地区之一,其生物多样性资源极其丰富(Myers et al.,2000).  相似文献   
78.
Abstract

Browse tree leaves of six species of Acacia (A. angustissima L., A. drepanolobium L., A. nilotica L., A. polyacantha L., A. senegal L., A. tortilis L.) were screened for chemical composition, including minerals and trace elements. Crude protein (CP) varied among the species from 145 (A. senegal) to 229 g/kg DM (A. angustissima). The species had moderate to high levels of minerals. The concentrations of Ca, P, Mg and S varied among the species from 14.6 – 31.5, 3.5 – 4.9, 1.4 – 3.0 and 1.7 – 2.8 g/kg DM, respectively. The forages showed relatively low concentrations of trace elements. Content of trace elements varied among the species from 4.5 – 23.8, 99.4 – 173.6, 146.2 – 432, 41.0 – 90.1, 10.9 – 22.2 and 0.05 – 0.65 mg/kg DM for Cu, Mo, Fe, Mn, Zn and Co, respectively. All leaves of browse species would meet the normal requirements for Ca, P, Mg and S in ruminants, although some species had higher levels of Ca than tabulated mineral requirements in livestock. Assayed Cu, Mn, Zn and Co would satisfy the lower range of recommended requirements of trace elements depending on their bioavailability. Therefore, browse leaves from Acacias could form good sources of CP and mineral supplements to ruminants.  相似文献   
79.
Tannins, polyphenolic compounds found in plants, are known to complex with proteins of feed and rumen bacteria. This group of substances has the potential to reduce methane production either with or without negative effects on digestibility and microbial yield. In the first step of this study, 10 tannin-rich extracts from chestnut, mimosa, myrabolan, quebracho, sumach, tara, valonea, oak, cocoa and grape seed, and four rapeseed tannin monomers (pelargonidin, catechin, cyanidin and sinapinic acid) were used in a series of in vitro trials using the Hohenheim gas test, with grass silage as substrate. The objective was to screen the potential of various tannin-rich extracts to reduce methane production without a significant effect on total gas production (GP). Supplementation with pelargonidin and cyanidin did not reduce methane production; however, catechin and sinapinic acid reduced methane production without altering GP. All tannin-rich extracts, except for tara extract, significantly reduced methane production by 8% to 28% without altering GP. On the basis of these results, five tannin-rich extracts were selected and further investigated in a second step using a Rusitec system. Each tannin-rich extract (1.5 g) was supplemented to grass silage (15 g). In this experiment, nutrient degradation, microbial protein synthesis and volatile fatty acid production were used as additional response criteria. Chestnut extract caused the greatest reduction in methane production followed by valonea, grape seed and sumach, whereas myrabolan extract did not reduce methane production. Whereas chestnut extract reduced acetate production by 19%, supplementation with grape seed or myrabolan extract increased acetate production. However, degradation of fibre fractions was reduced in all tannin treatments. Degradation of dry matter and organic matter was also reduced by tannin supplementation, and no differences were found between the tannin-rich extracts. CP degradation and ammonia-N accumulation in the Rusitec were reduced by tannin treatment. The amount and efficiency of microbial protein synthesis were not significantly affected by tannin supplementation. The results of this study indicated that some tannin-rich extracts are able to reduce methane production without altering microbial protein synthesis. We hypothesized that chestnut and valonea extract have the greatest potential to reduce methane production without negative side effects.  相似文献   
80.
In this study, 10 samples of rapeseed meal (RSM) from 10 different oil plants in Germany were examined. In situ rumen degradation of CP was determined by incubation over 1, 2, 4, 8, 16, 32 and 72 h in duplicate per time point using three rumen fistulated dry cows. Degradation kinetics were estimated by an exponential model and effective CP degradation was calculated. Degradation was corrected for small particle loss as the difference between washing loss and water-soluble fraction. Amino acid analysis was carried out in the samples and in the residues after 8 and 16 h of incubation in situ and degradation of individual amino acids was calculated for these incubation times. In vitro pepsin–pancreatin digestibility of CP (IPD) was determined in the samples as well as in the 8 and 16 h residues. Effective CP degradation for a rumen outflow rate of 8%/h (ED8) averaged 54.3% with a considerable variation among samples ranging from 44.3% to 62.7%. A multiple regression equation containing acid detergent insoluble N, total glucosinolates and petroleum ether extract as independent variables predicted ED8 with satisfying accuracy (R2 = 0.74; RSD = 6.4%). Degradation of amino acids was different from that of CP for most amino acids studied, especially after 8 h of incubation. Compared with CP, degradation of essential amino acids was predominantly lower while degradation of non-essential amino acids was higher in most cases. However, for lysine and methionine no distinct difference with CP degradation was found. Degradation of individual amino acids was predicted from CP degradation with high accuracy using linear regression equations. Average IPD of RSM was 79.8 ± 2.6%. IPD was lower in the incubation residues and decreased with longer incubation time and increasing rumen degradation, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号